Criterios para la planeación de centros de distribución. Revisión bibliométrica
Criteria for distribution center planning. A bibliometric review
Contenido principal del artículo
Resumen
Este artículo documenta los principales criterios que se han incluido para la planificación y dimensionamiento de Centros de Distribución, mediante una revisión sistemática; a partir de las publicaciones encontradas en la base de datos bibliográfica Scopus. Los resultados obtenidos arrojaron cinco tendencias: -La inclusión de robots automatizados y de montacargas inteligentes, -centros de distribución multiobjetivo, -diseño de la distribución o layout, -el dimensionamiento de lotes y -la planificación bajo escenarios de incertidumbre. Con base en estos, se pueden tomar decisiones importantes para la mejora de los procesos logísticos, la cadena de distribución y la rentabilidad de la organización.
Palabras clave:
Descargas
Detalles del artículo
Referencias (VER)
Aghezzaf, E. (2005). Capacity planning and warehouse location in supply chains with uncertain demands. The Journal of the Operational Research Society, 56(4), 453-462. https://doi.org/10.1057/palgrave.jors.2601834
Al Husaeni, D., & Nandiyanto, A. (2022). Bibliometric Using Vosviewer with Publish or Perish (using Google Scholar data): From Step-by-step Processing for Users to the Practical Examples in the Analysis of Digital Learning Articles in Pre and Post Covid-19 Pandemic. ASEAN Journal of Science and Engineering, 2(1), 19-46. https://ejournal.upi.edu/index.php/AJSE/article/view/37368
Askin, R., Baffo, I., & Xia, M. (2014). Multi-commodity warehouse location and distribution planning with inventory consideration. International Journal of Production Research, 52(7), 1897-1910. https://doi.org/10.1080/00207543.2013.787171
Atabaki, M., Pasandideh, S., & Mohammadi, M. (2020). A hybrid invasive weed optimization for an imperfect, two-warehouse, lot-sizing problem. Journal of Modelling in Management, 15(4), 1363-1387. https://doi.org/10.1108/JM2-03-2019-0059
Awasthi, A., Chauhan, S., & Goyal, S. (2011). A multi-criteria decision making approach for location planning for urban distribution centers under uncertainty. Mathematical and computer modelling, 53(1-2), 98-109. https://doi.org/10.1016/j.mcm.2010.07.023
Bao, L., Dang, T., & Anh, N. (2019). Storage assignment policy and route planning of AGVS in warehouse optimization. 2019 International Conference on System Science and Engineering (ICSSE). (pp. 599-604). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ICSSE.2019.8823418
Bard, J., Morton, D., & Wang, Y. (2007). Workforce planning at USPS mail processing and distribution centers using stochastic optimization. Annals of Operations Research, 155(1), 51-78. https://doi.org/10.1007/s10479-007-0213-1
Basak, A., Maity, D., & Das, S. (2013). A differential invasive weed optimization algorithm for improved global numerical optimization. Applied Mathematics and Computation, 219(12), 6645–6668. https://doi.org/10.1016/j.amc.2012.12.057
Bolu, A., & Korçak, O. (2019). Path Planning for Multiple Mobile Robots in Smart Warehouse (Delft University of Technology; IEEE, trad.). 7th IEEE International Conference on Control, Mechatronics and Automation (ICCMA 2019). (pp. 144-150). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ICCMA46720.2019.8988635
Bowen, T. (2008). Moving places: the geography of warehousing in the US. Journal of Transport Geography, 16(6), 379-387. https://doi.org/10.1016/j.jtrangeo.2008.03.001
Cheng, C., Wu, Y., & He, Q. (2008). Study on truck stowage planning of cargo distribution center in a town (Vol. 2). https://doi.org/10.1109/ICICTA.2008.208
Claes, D., Oliehoek, F., Baier, H., & Tuyls, K. (2017). Decentralised online planning for multi-robot warehouse commissioning (Das S., Larson K., Winikoff M., & Durfee E. (eds.); DeepMind; et al.; IBM Research; Microsoft; University of Otago; University of Waterloo, Faculty of Mathematics, trad.; Vol. 1). International Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS). https://www.scopus.com/inward/record.uri?eid=2-s2.0-85046405601&partnerID=40&md5=ca5e986c30710fafee48395e56a2b683
de Koster, R., Le-Duc, T., & Roodbergen, K. (2007). Design and control of warehouse order picking: A literature review. In European Journal of Operational Research (Vol. 182, N. 2, pp. 481–501). https://doi.org/10.1016/j.ejor.2006.07.009
Faber, N., de Koster, R., & van de Velde, S. (2002). Linking warehouse complexity to warehouse planning and control structure: An exploratory study of the use of warehouse management information systems. International Journal of Physical Distribution and Logistics Management, 32(5), 381-395. https://doi.org/10.1108/09600030210434161
Federgruen, A., & Tzur, M. (1999). Time-Partitioning Heuristics: Application to One Warehouse, Multiitem, Multiretailer Lot-Sizing Problems. Naval Research Logistics, 46(5), 463-486. https://doi.org/10.1002/(SICI)1520-6750(199908)46:5<463::AID-NAV2>3.0.CO;2-S
Fernández, M., La Rotta, E., Ramírez, M., & Quiroga, O. (2016). Collaborative planning capacities in distribution centers. En Zhang L., Song X., & Wu Y. (Eds.), & Federation of Asian Simulation Societies (ASIASIM); The Society for Modeling and Simulation International (SCS) (Trad.), 16th Asia Simulation Conference and SCS Autumn Simulation Multi-Conference, AsiaSim/SCS AutumnSim 2016 (Vol. 643, pp. 622-632). Springer Verlag. https://doi.org/10.1007/978-981-10-2663-8_64
Gašpar, V., Madarász, L., Paralič, J., & Ténaiová, K. (2011). Design and implementation of a client warehouse application over an enterprise resource planning system for mobile devices. 3rd IEEE International Symposium on Logistics and Industrial Informatics, LINDI 2011. Budapest. https://doi.org/10.1109/LINDI.2011.6031123
Geraldes, A, Carvalho, M., & Pereira, G. (2008). A warehouse design decision model—Case study. 2008 IEEE International Engineering Management Conference, 1-5. https://ieeexplore.ieee.org/abstract/document/4618004/
Guleria, D., & Kaur, G. (2021). Bibliometric analysis of ecopreneurship using VOSviewer and RStudio Bibliometrix, 1989-2019. Library Hi Tech, ahead-of-print(ahead-of-print). https://doi.org/10.1108/LHT-09-2020-0218
Han, S. D., & Yu, J. (2019). Effective Heuristics for Multi-Robot Path Planning in Warehouse Environments. 2nd International Symposium on Multi-Robot and Multi-Agent Systems, MRS 2019. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/MRS.2019.8901065
Hara, T., Higashi, T., Ota, J., & Tamura, H. (2003). Motion planning of fork lift group in warehouse management - Dynamical scheduling of arrangement work. IEEE International Conference on Robotics, Intelligent Systems and Signal Processing, 2003. Proceedings. 2003. (pp. 312-317) vol.1. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/RISSP.2003.1285593
Hoseini, S., Gharaei, A., & Karimi, M. (2019). Modelling and optimal lot-sizing of integrated multi-level multi-wholesaler supply chains under the shortage and limited warehouse space: generalised outer approximation. International Journal of Systems Science: Operations and Logistics, 6(3), 237-257. https://doi.org/10.1080/23302674.2018.1435835
Hütter, C. (2016). More Shuttles, Less Cost: Energy Efficient Planning for Scalable High-Density Warehouse Environments. Proceedings of the International Conference on Automated Planning and Scheduling, 26, 403-411. https://ojs.aaai.org/index.php/ICAPS/article/view/13782
Hvezda, J., Rybecky, T., Kulich, M., & Preucil, L. (2018). Context-Aware Route Planning for Automated Warehouses. 21st International Conference on Intelligent Transportation Systems (ITSC). (pp. 2955-2960). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ITSC.2018.8569712
Iris, C., & Yenisey, M. (2012). Multi-item simultaneous lot sizing and storage allocation with production and warehouse capacities. In 3rd International Conference on Computational Logistics, ICCL 2012: Vol. 7555 LNCS. (pp. 129–141). https://doi.org/10.1007/978-3-642-33587-7_10
Ito, T., & Mousavi Jahan Abadi, S. (2002). Agent-based material handling and inventory planning in warehouse. Journal of intelligent manufacturing, 13(3), 201–210. https://doi.org/10.1023/A:1015786822825
Jaruphongsa, W., Çetinkaya, S., & Lee, C.-Y. (2004). Warehouse space capacity and delivery time window considerations in dynamic lot-sizing for a simple supply chain. International Journal of Production Economics, 92(2), 169-180. https://doi.org/10.1016/j.ijpe.2003.10.012
Jolayemi, J., & Olorunniwo, F. (2004). A deterministic model for planning production quantities in a multi-plant, multi-warehouse environment with extensible capacities. International Journal of Production Economics, 87(2), 99–113. https://doi.org/10.1016/S0925-5273(03)00095-1
Kang, S. (2020). Warehouse location choice: A case study in Los Angeles, CA. Journal of Transport Geography, 88, 102297. https://doi.org/10.1016/j.jtrangeo.2018.08.007
Karasek, J., Burget, R., Uher, V., Dutta, M., & Kumar, Y. (2013). Optimization of logistic distribution centers process planning and scheduling. 2013 6th International Conference on Contemporary Computing. IC3 2013, Noida. https://doi.org/10.1109/IC3.2013.6612217
Kumar, N., & Kumar, C. (2018). Development of collision free path planning algorithm for warehouse mobile robot. Procedia Computer Science, 133. 456-463. https://doi.org/10.1016/j.procs.2018.07.056
Lam, H., Choy, K., Ho, G., Cheng, S., & Lee, C. (2015). A knowledge-based logistics operations planning system for mitigating risk in warehouse order fulfillment. International Journal of Production Economics, 170, 763-779. https://doi.org/10.1016/j.ijpe.2015.01.005
Lee, C.-Y., Çetinkaya, S., & Jaruphongsa, W. (2003). A Dynamic Model for Inventory Lot Sizing and Outbound Shipment Scheduling at a Third-Party Warehouse. Operations research, 51(5), 735-747. https://doi.org/10.1287/opre.51.5.735.16752
Liao, J.-J., Huang, K.-N., & Chung, K.-J. (2012). Lot-sizing decisions for deteriorating items with two warehouses under an order-size-dependent trade credit. International Journal of Production Economics, 137(1), 102-115. https://doi.org/10.1016/j.ijpe.2012.01.020
Liu, H., Chen, Q., Pan, N., Sun, Y., An, Y., & Pan, D. (2022). UAV Stocktaking Task-Planning for Industrial Warehouses Based on the Improved Hybrid Differential Evolution Algorithm. IEEE Transactions on Industrial Informatics, 18(1), 582-591. https://doi.org/10.1109/TII.2021.3054172
Marchi, B., Zanoni, S., & Jaber, M. (2020). Energy implications of lot sizing decisions in refrigerated warehouses. Energies, 13(7). https://doi.org/10.3390/en13071739
Musolino, G., Rindone, C., Polimeni, A., & Vitetta, A. (2019). Planning urban distribution center location with variable restocking demand scenarios: General methodology and testing in a medium-size town. Transport Policy, 80, 157-166. https://doi.org/10.1016/j.tranpol.2018.04.006
Pichuante, C. (2016). Visualización de grafos de co-autoría y de conocimiento basado en publicaciones científicas, implementada en VOSviewer. https://repositorio.uc.cl/xmlui/handle/11534/21357
Pochet, Y., & Wolsey, L. (2006). Production Planning by Mixed Integer Programming. Springer New York. https://doi.org/10.1007/0-387-33477-7
Poon, T., Choy, K., Chan, F., Ho, G., Gunasekaran, A., Lau, H., & Chow, H. (2011). A real-time warehouse operations planning system for small batch replenishment problems in production environment. Expert systems with applications, 38(7), 8524-8537. https://doi.org/10.1016/j.eswa.2011.01.053
Qin, Z. C. (2014). Research on the methods of logistics systems planning in distribution center. En Lin Z., Hu H., Zhang Y., Qiao J., & Xu J. (Eds.), & Institute of Natural Science and Advanced Technology; Management Science and Industrial Engineering; Scientific .Net; Trans Tech Publications inc. (Trad.), 2014 International Conference on Manufacturing Technology and Electronics Applications, ICMTEA 2014 (Vols. 687-691, pp. 4573-4576). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/AMM.687-691.4573
Rahayu, S., Ridwan, A. Y., & Saputra, M. (2019). Designing Green Warehouse Systems Based on Enterprise Resource Planning for the Leather Tanning Industry. 2019 International Conference on Electrical Engineering and Informatics (ICEEI), 2019, pp. 602-607. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ICEEI47359.2019.8988819
Rao, A., & Rao, M. (1998). Solution procedures for sizing of warehouses. European journal of operational research, 108(1), 16-25. https://doi.org/10.1016/S0377-2217(97)00159-8
Rizkya, I., Syahputri, K., Sari, R. M., Siregar, I., Tambunan, M., & Anizar. (2018). DRP: Joint Requirement Planning in Distribution Centre and Manufacturing (Nandiyanto A.B.D. & Abdullah A.G. (eds.); Vol. 434). Institute of Physics Publishing. https://doi.org/10.1088/1757-899X/434/1/012243
Roundy, R. (1985). 98%-Effective Integer-Ratio Lot-Sizing for One-Warehouse Multi-Retailer Systems. Management science, 31(11), 1416-1430. https://doi.org/10.1287/mnsc.31.11.1416
Shiau, J.-Y., & Huang, J.-A. (2020). Wave planning for cart picking in a randomized storage warehouse. Applied Sciences (Switzerland), 10(22), 1-28. https://doi.org/10.3390/app10228050
Shmatko, A., Barykin, S., Sergeev, S., & Thirakulwanich, A. (2021). Modeling a logistics hub using the digital footprint method—the implication for open innovation engineering. Journal of Open Innovation: Technology, Market, and Complexity, 7(1), 1-16. https://doi.org/10.3390/joitmc7010059
Silva, A., Coelho, L., Darvish, M., & Renaud, J. (2020). Integrating storage location and order picking problems in warehouse planning. Transportation Research Part E: Logistics and Transportation Review, 140. https://doi.org/10.1016/j.tre.2020.102003
Strack, G., & Pochet, Y. (2010). An integrated model for warehouse and inventory planning. European journal of operational research, 204(1), 35-50. https://doi.org/10.1016/j.ejor.2009.09.006
Teja, P., & Kumaar, A. (2018). QR Code based Path Planning for Warehouse Management Robot. 7th International Conference on Advances in Computing, Communications and Informatics, ICACCI. (pp. 1239-1244). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ICACCI.2018.8554760
Thangam, A., & Uthayakumar, R. (2010). Optimal pricing and lot-sizing policy for a two-warehouse supply chain system with perishable items under partial trade credit financing. Operational research quarterly, 10(2), 133-161. https://doi.org/10.1007/s12351-009-0066-2
Trab, S., Bajic, E., Zouinkhi, A., Abdelkrim, M., Chekir, H., & Ltaief, R. (2015). Product Allocation Planning with Safety Compatibility Constraints in IoT-based Warehouse. Procedia Computer Science, 73. 290-297. https://doi.org/10.1016/j.procs.2015.12.033
Truong, N., Dang, T., & Nguyen, D. (2017). Development and optimization of automated storage and retrieval algorithm in warehouse by combining storage location identification and route planning method. 2017 International Conference on System Science and Engineering (ICSSE). (pp. 600-605). https://doi.org/10.1109/ICSSE.2017.8030945
Tsang, K., Ni, Y., Wong, C., & Shi, L. (2018). A Novel Warehouse Multi-Robot Automation System with Semi-Complete and Computationally Efficient Path Planning and Adaptive Genetic Task Allocation Algorithms. 15th International Conference on Control, Automation, Robotics and Vision, ICARCV 2018. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ICARCV.2018.8581092
Vivaldini, K., Galdames, J., Bueno, T., Araújo, R., Sobral, R., Becker, M., & Caurin, G. (2010). Robotic forklifts for intelligent warehouses: Routing, path planning, and auto-localization. 2010 IEEE International Conference on Industrial Technology. (pp. 1463-1468). https://doi.org/10.1109/ICIT.2010.5472487
Vroblefski, M., Ramesh, R., & Zionts, S. (2000). Efficient lot-sizing under a differential transportation cost structure for serially distributed warehouses. European journal of operational research, 127(3), 574-593. https://doi.org/10.1016/S0377-2217(99)00342-2
Yang, B., Li, W., Wang, J., Yang, J., Wang, T., & Liu, X. (2020). A novel path planning algorithm for warehouse robots based on a two-dimensional grid model. IEEE access: practical innovations, open solutions, 8, 80347-80357. https://doi.org/10.1109/access.2020.2991076
Yang, Q., Lian, Y., & Xie, W. (2020). Hierarchical planning for multiple AGVs in warehouse based on global vision. Simulation Modelling Practice and Theory, 104. https://doi.org/10.1016/j.simpat.2020.102124
Yilmaz, O., Baskak, M., & Erbiyik, H. (2015). To define service level in an integrated model for warehouse and inventory planning by utilizing heuristic solution: An example. 2015 International Conference on Industrial Engineering and Operations Management (IEOM). (pp. 1-8). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/IEOM.2015.7093712
Yu, J., Li, R., Feng, Z., Zhao, A., Yu, Z., Ye, Z., & Wang, J. (2020). A Novel Parallel Ant Colony Optimization Algorithm for Warehouse Path Planning. Journal of Control Science and Engineering. https://doi.org/10.1155/2020/5287189
Yu, Y., Li, Y., Zhang, Z., Gu, Z., Zhong, H., Zha, Q., Yang, L., Zhu, C., & Chen, E. (2020). A bibliometric analysis using VOSviewer of publications on COVID-19. Annals of Translational Medicine, 8(13), 816. https://doi.org/10.21037/atm-20-4235
Zarrinpoor, N. (2019). A chance-constrained fuzzy programming approach for a sustainable supply chain network design under multiple sources of uncertainty. International Journal of Supply and Operations Management, 6(4), 349-359. https://doi.org/10.22034/2019.4.5
Zhang, G., Nishi, T., Turner, S. D. O., Oga, K., & Li, X. (2017). An integrated strategy for a production planning and warehouse layout problem: Modeling and solution approaches. Omega, 68, 85-94. https://doi.org/10.1016/j.omega.2016.06.005
Zhang, X., Geng, K., Zhang, L., & Yang, J. (2020). Research on multi-objective storage planning without fixed storage space in multi-warehouse. Journal of physics. Conference series, 1607, 012094. https://doi.org/10.1088/1742-6596/1607/1/012094
Zhang, Z., Guo, Q., Chen, J., & Yuan, P. (2018). Collision-Free Route Planning for Multiple AGVs in an Automated Warehouse Based on Collision Classification. IEEE Access, 6, 26022-26035. https://doi.org/10.1109/ACCESS.2018.2819199
Zhao, D., Yang, J., & Zhou, H. (2020). Layout Design of Warehouse Based on Systematic Layout Planning and GA-ACO Algorithm. 2020 Chinese Automation Congress (CAC). (pp. 7101-7104). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/CAC51589.2020.9327612