Prototipo funcional de software de reconocimiento biométrico de huellas dactilares para aerolíneas
Functional Prototype of Biometric Fingerprint Recognition Software for Airlines
Contenido principal del artículo
Resumen
La identificación de personas con huellas dactilares es uno de los métodos más seguros y confiables que existen en la actualidad. Aunque esta tecnología ha sido ampliamente utilizada en otros contextos como la banca, la telefonía móvil y el control de acceso, su adopción en procesos aeroportuarios colombianos aún es limitada. Este trabajo presenta el desarrollo de un prototipo de software biométrico para el reconocimiento y registro de pasajeros de aerolíneas, cuya novedad radica en la integración de algoritmos de procesamiento en C++, una interfaz gráfica desarrollada en C#/. NET y una base de datos en SQL Server, optimizados para escenarios de check-in y abordaje. El prototipo demostró un funcionamiento eficiente en la autenticación biométrica, logrando una identificación rápida y precisa que contribuye a reducir los tiempos de atención, eliminar la dependencia de documentos físicos y fortalecer la seguridad frente a riesgos de suplantación. Además, la arquitectura modular y el uso de metodologías ágiles (Scrum) permiten la escalabilidad del sistema hacia la incorporación de nuevas tecnologías biométricas y su despliegue en entornos en la nube, ofreciendo una solución adaptable a las necesidades operativas cambiantes del sector aeronáutico.
Descargas
Datos de publicación
Perfil evaluadores/as N/D
Declaraciones de autoría
- Sociedad académica
- Tecnológico de Antioquia
- Editorial
- Tecnológico de Antioquia - Institución Universitaria
Detalles del artículo
Referencias (VER)
N. Khan and M. Efthymiou, “The use of biometric technology at airports: The case of customs and border protection (CBP),” International Journal of Information Management Data Insights, vol. 1, no. 2, p. 100049, 2021, Doi: https://doi.org/10.1016/j.jjimei.2021.100049.
D. Muthusamy and R. Ponnusamy, “An efficient approach for finger vein verification to solving the biometric recognition technique,” Pattern Recognit, vol. 164, p. 111563, 2025, doi: https://doi.org/10.1016/j.patcog.2025.111563.
M. Hron and N. Obwegeser, “Why and how is Scrum being adapted in practice: A systematic review,” Journal of Systems and Software, vol. 183, p. 111110, 2022, Doi: https://doi.org/10.1016/j.jss.2021.111110.
J. Guo, Z. Xie, Q. Li, S. Zhan, and J. Xu, “Railway Passenger Flow Recognition Algorithm for Terminal Station Based on Cost Theory and Automatic Frequency Control,” IEEE Access, vol. 8, pp. 26885–26892, 2020, Doi: 10.1109/ACCESS.2020.2968721.
I. T. Miller, B. K. Wiederhold, C. S. Miller, and M. D. Wiederhold, “Virtual Reality Air Travel Training with Children on the Autism Spectrum: A Preliminary Report,” Cyberpsychol Behav Soc Netw, vol. 23, no. 1, pp. 10–15, 2020, Doi: 10.1089/cyber.2019.0093.
M. T. B. A. Lodhi et al., “Passenger communication system for next-generation self-driving cars: A buddy,” International Journal of Advanced Computer Science and Applications, vol. 11, no. 8, pp. 773–780, 2020, Doi: 10.14569/IJACSA.2020.0110895.
I. S. Miftahov, L. Y. Grudtsyna, and I. Y. Myshkina, “Development of application for recognition of object groups in the image,” International Journal of Engineering Research and Technology, vol. 13, no. 11, pp. 3611–3615, 2020, Doi: 10.37624/ijert/13.11.2020.3611-3615.
Q. Xu, B. Wang, F. Zhang, D. S. Regani, F. Wang, and K. J. R. Liu, “Wireless AI in Smart Car: How Smart a Car Can Be?,” IEEE Access, vol. 8, pp. 55091–55112, 2020, Doi: 10.1109/ACCESS.2020.2978531.
Y. Dai, W. Liu, H. Li, and L. Liu, “Efficient Foreign Object Detection between PSDs and Metro Doors via Deep Neural Networks,” IEEE Access, vol. 8, pp. 46723–46734, 2020, Doi: 10.1109/ACCESS.2020.2978912.
A. J. Balsero-Meneses and C. G. Vargas-García, “Diseño e implementación de un prototipo para el control de acceso en la sede de ingeniería de la Universidad Distrital Francisco José de Caldas mediante el uso de torniquetes controlados por carné con tecnología nfc y lector biométrico de huella dactilar,” Trabajo de grado para optar al título de Ingeniero Electrónico, 2016. Online. Available: https://repository.udistrital.edu.co/bitstream/handle/11349/3430/VargasGarciaCristianGerman2016.pdf;jsessionid=35ED6E5A514451C334D2CC7032970531?sequence=1. [Accessed: 15-Jun-2021].
J. Naranjo-Alcazar, S. Perez-Castanos, P. D. Zuccarello, and M. Cobos, “Acoustic Scene Classification with Squeeze-Excitation Residual Networks,” IEEE Access, vol. 8, pp. 112287–112296, 2020, Doi: 10.1109/ACCESS.2020.3002761.
M. Din, A. Bashir, A. Basit, and S. Lakho, “Abandoned object detection using frame differencing and background subtraction,” International Journal of Advanced Computer Science and Applications, vol. 11, no. 7, pp. 676–681, 2020, Doi: 10.14569/IJACSA.2020.0110781.
G. Chen, W. Chen, S. Zhang, D. Zhang, and H. Liu, “Influence of Mobile Payment on Bus Boarding Service Time,” J Adv Transp, vol. 2020, 2020, Doi: 10.1155/2020/9635853.
Y. Han, S. Ma, Y. Xu, L. He, S. Li, and M. Zhu, “Effective complex airport object detection in remote sensing images based on improved end-to-end convolutional neural network,” IEEE Access, vol. 8, pp. 172652–172663, 2020, Doi: 10.1109/ACCESS.2020.3021895.
J. Sini, A. C. Marceddu, and M. Violante, “Automatic emotion recognition for the calibration of autonomous driving functions,” Electronics (Switzerland), vol. 9, no. 3, 2020, Doi: 10.3390/electronics9030518.
A. Gulliver, P. E. Carnell, S. M. Trevathan-Tackett, M. P. de Paula Costa, P. Masqué, and P. I. Macreadie, “Estimating the Potential Blue Carbon Gains From Tidal Marsh Rehabilitation: A Case Study From South Eastern Australia,” Front Mar Sci, vol. 7, 2020, Doi: 10.3389/fmars.2020.00403.
C. Kim, K. C. Lee, and F. J. Costello, “The intention of passengers towards repeat use of biometric security for sustainable airport management,” Sustainability (Switzerland), vol. 12, no. 11, 2020, Doi: 10.3390/su12114528.
R. M. Alsina-Pagès, M. Hervás, L. Duboc, and J. Carbassa, “Design of a low-cost configurable acoustic sensor for the rapid development of sound recognition applications,” Electronics (Switzerland), vol. 9, no. 7, pp. 1–20, 2020, Doi: 10.3390/electronics9071155.
B. Su et al., “A passenger model for simulating boarding and alighting in spatially confined transportation scenarios,” J Comput Sci, vol. 45, 2020, doi: 10.1016/j.jocs.2020.101173.
B. Padmaja, M. B. Madhu Bala, and E. Krishna Rao Patro, “A comparison on visual prediction models for MAMO (multi activity-multi object) recognition using deep learning,” J Big Data, vol. 7, no. 1, 2020, Doi: 10.1186/s40537-020-00296-8.
S. Hadavi, H. Buldeo Rai, S. Verlinde, H. Huang, C. Macharis, and T. Guns, “Analyzing passenger and freight vehicle movements from automatic-Number plate recognition camera data,” European Transport Research Review, vol. 12, no. 1, 2020, Doi: 10.1186/s12544-020-00405-x.
T. Kempapidis, C. L. Castle, R. G. Fairchild, S. F. Hussain, A. T. G. Cash, and R. S. M. Gomes, “A scientific evaluation of autonomous vehicle user experience on sighted and visually impaired passengers based on FACS (Facial Analysis Coding System) and a user experience questionnaire,” J Transp Health, vol. 19, 2020, Doi: 10.1016/j.jth.2020.100906.
C. Kim, K. C. Lee, and F. J. Costello, “The Intention of Passengers towards Repeat Use of Biometric Security for Sustainable Airport Management,” Sustainability, vol. 12, no. 11, p. 4528, 2020.
N. A. A. Rahman, “Biometric Technology Application in the Aviation Industry: Preliminary Findings from Passenger Perspective,” Turkish J. Comput. Math. Educ., vol. 12, no. 11, pp. 2279–2288, 2021.
K. O. Kasim, S. R. Winter, D. Liu, J. R. Keebler, and T. B. Spence, “Passengers’ perceptions on the use of biometrics at airports: A statistical model of the extendedheory of planned behavior,” Technol. Soc., vol. 67, p. 101806, 2021.
I. A. Khi, “Ready for take-off: how biometrics and blockchain can beat aviation's quality issues,” Biom. Technol. Today, vol. 2020, no. 1, pp. 8–10, 2020.
A. De Keyser, Y. Bart, X. Gu, S. Q. Liu, S. G. Robinson, and P. K. Kannan, “Opportunities and challenges of using biometrics for business: Developing a research agenda,” J. Bus. Res., vol. 136, pp. 52–62, 2021.
N. Khan and M. Efthymiou, “The use of biometric technology at airports: The case of customs and border protection (CBP),” Int. J. Inf. Manage. Data Insights, vol. 1, no. 2, p. 100049, 2021.
S. Binder, A. Iannone, and C. Leibner, “Biometric technology in ‘no-gate border crossing solutions’ under consideration of privacy, ethical, regulatory and social acceptance,” Multimed Tools Appl, vol. 80, no. 15, pp. 23665–23678, 2021, Doi: 10.1007/s11042-020-10266-0.
B. Hong, X. Ma, W. Tang, and Z. Shen, “Recognition of Air Passengers’ Willingness to Pay for Seat Selection for Imbalanced Data Based on Improved XGBoost,” International Journal of Cognitive Informatics and Natural Intelligence, vol. 16, no. 1, 2022, Doi: 10.4018/IJCINI.312249.
Z. Guo, Z. Xiao, R. S. Alroobaea, A. M. Baqasah, A. Althobaiti, and H. S. Gill, “Design and Study of Urban Rail Transit Security System Based on Face Recognition Technology,” Informatica (Slovenia), vol. 46, no. 3, pp. 429–438, 2022, Doi: 10.31449/inf.v46i3.3862.
M. R. Marín, J. C. R. Uribe, and J. C. O. Morales, “Una mirada a la biometría,” Av. en Sist. e Informática, vol. 6, no. 2, pp. 29–38, 2009.
K. Ghorpade and A. A. Khaparde, “Single channel speech enhancement using evolutionary algorithm with LOG-MMSE,” ASEAN Engineering Journal, vol. 12, no. 1, pp. 83–91, 2022, Doi: 10.11113/aej.v12.16770.
C. Xiu, Y. Sun, Q. Peng, C. Chen, and X. Yu, “Learn traffic as a signal: Using ensemble empirical mode decomposition to enhance short-term passenger flow prediction in metro systems,” Journal of Rail Transport Planning and Management, vol. 22, 2022, Doi: 10.1016/j.jrtpm.2022.100311.
S. S. Thenuwara, C. N. Premachandra, and H. Kawanaka, “A multi-agent based enhancement for multimodal biometric system at border control,” Array, vol. 14, 2022, Doi: 10.1016/j.array.2022.100171.
R. Zhang, X. Zhang, L. Xiao, and J. Qiu, “Recognition of Aircraft Activities at Airports on Video Micro-Satellites: Methodology and Experimental Validation,” Aerospace, vol. 9, no. 8, 2022, Doi: 10.3390/aerospace9080414.
M. Y. Zaliskyi, O. A. Shcherbyna, L. Tereshchenko, A. A. Osipchuk, and O. Zharova, “Shadow Image Processing of X-Ray Screening System for Aviation Security,” International Journal of Image, Graphics and Signal Processing, vol. 14, no. 6, pp. 26–46, 2022, Doi: 10.5815/ijigsp.2022.06.03.


