Machine Learning aplicado a la predicción de pacientes en EPS: una revisión de literatura
Machine Learning Applied to Patient Prediction in EPS: a Literature Review
Contenido principal del artículo
Resumen
Una revisión sistemática de literatura en la cual se busca comprender los términos, además de los estudios previos sobre Machine Learning (ML) y Bussines Intelligence (BI) para la predicción de una variable objetivo. La metodología utilizada incluyó una exhaustiva búsqueda de la literatura científica en bases de datos Scopus y ScienceDidirect y se seleccionaron estudios que cumplieran con criterios de inclusión predefinidos. Este artículo de revisión sistemática de literatura proporciona una visión general del ML y la IA aplicada y sus modelos. Los hallazgos destacan tanto los avances prometedores como los desafíos pendientes, lo que puede servir como base para futuras investigaciones y aplicaciones en el sector salud.
Descargas
Datos de publicación
Perfil evaluadores/as N/D
Declaraciones de autoría
- Sociedad académica
- Tecnológico de Antioquia
- Editorial
- Tecnológico de Antioquia - Institución Universitaria
Detalles del artículo
Referencias (VER)
M. Moreb, T. A. Mohammed, and O. Bayat, “A novel software engineering approach toward using machine learning for improving the efficiency of health systems”, IEEE Access, vol. 8, pp. 23169–23178, 2020, doi: 10.1109/ACCESS.2020.2970178.
E. Mbunge and J. Batani, “Application of deep learning and machine learning models to improve healthcare in sub-Saharan Africa: Emerging opportunities, trends and implications”, Telematics and Informatics Reports, vol. 11, Sep. 2023, doi: 10.1016/j.teler.2023.100097.
S. Zhang, L. Tao, and T. Zheng, “Industry-Academic-Education Integration: Innovation and Practice of Training Mode of Applied Statistics Talents in Big Data Era —Taking Zhejiang University of Science and Technology as an Example”, Open J. Soc. Sci., vol. 09, n° 10, pp. 507–512, 2021, doi: 10.4236/JSS.2021.910037.
M. A. Tripathi, K. Madhavi, V. S. P. Kandi, V. K. Nassa, B. Mallik, and M. K. Chakravarthi, “Machine learning models for evaluating the benefits of business intelligence systems”, Journal of High Technology Management Research, vol. 34, n° 2, 2023, doi: 10.1016/j.hitech.2023.100470.
T. Lefèvre, “Big data in forensic science and medicine”, Journal of Forensic and Legal Medicine, vol. 57. Churchill Livingstone, pp. 1–6, 2018. doi: 10.1016/j.jflm.2017.08.001.
“Glosario de Conceptos”. Accessed: Oct. 02, 2023. [Online]. Available: https://www.ine.es/DEFIne/es/concepto.htm?c=5094&tf=&op=
Ministerio de Salud, “Ley100 1993”.
R. B. Ruiz y J. D. Velásquez, “Artificial intelligence at the service of the health of the future”, Revista Medica Clinica Las Condes, vol. 34, n° 1, pp. 84–91, 2023, doi: 10.1016/j.rmclc.2022.12.001.
A. Núñez Reiz, M. A. Armengol de la Hoz, and M. Sánchez García, “Big Data Analysis and Machine Learning in Intensive Care Units”, Medicina Intensiva, vol. 43, n° 7, pp. 416–426, 2019. doi: 10.1016/j.medin.2018.10.007.
M. F. A. van Hoffen, G. Norder, J. W. R. Twisk, and C. A. M. Roelen, “Development of Prediction Models for Sickness Absence Due to Mental Disorders in the General Working Population”, J. Occup. Rehabil., vol. 30, no. 3, pp. 308–317, 2020, doi: 10.1007/s10926-019-09852-3.
A. A. Verma et al., “Implementing machine learning in medicine,” CMAJ, vol. 193, n° 34, pp. E1351–E1357, 2021, doi: 10.1503/cmaj.202434.
K. O. Robsky et al., “Characterization of geographic mobility among participants in facility- And community-based tuberculosis case finding in urban Uganda”, PLoS One, vol. 16, n° 5, 2021, doi: 10.1371/journal.pone.0251806.
L. K. Shrivastav and R. Kumar, “Empirical Analysis of Impact of Weather and Air Pollution Parameters on COVID-19 Spread and Control in India Using Machine Learning Algorithm”, Wirel Pers Commun, vol. 130, n° 3, pp. 1963–1991, 2023, doi: 10.1007/s11277-023-10367-7.
F. M. Albagmi et al., “Predicting Multimorbidity Using Saudi Health Indicators (Sharik) Nationwide Data: Statistical and Machine Learning Approach”, Healthcare (Switzerland), vol. 11, n° 15, 2023, doi: 10.3390/healthcare11152176.
R. Ferdousi, M. A. Hossain, and A. El Saddik, “Early-Stage Risk Prediction of Non-Communicable Disease Using Machine Learning in Health CPS”, IEEE Access, vol. 9, pp. 96823–96837, 2021, doi: 10.1109/ACCESS.2021.3094063.
I. R. I. Alberto et al., “The impact of commercial health datasets on medical research and health-care algorithms”, Lancet Digit Health, vol. 5, n° 5, pp. e288–e294, 2023, doi: 10.1016/S2589-7500(23)00025-0.
K. M. Kim, D. S. Evans, J. Jacobson, X. Jiang, W. Browner, and S. R. Cummings, “Rapid prediction of in-hospital mortality among adults with COVID-19 disease”, PLoS One, vol. 17, n° 7, 2022, doi: 10.1371/journal.pone.0269813.
M. Islam, M. Usman, A. Mahmood, A. A. Abbasi, and O. Y. Song, “Predictive analytics framework for accurate estimation of child mortality rates for Internet of Things enabled smart healthcare systems”, Int J Distrib. Sens Netw, vol. 16, n° 5, 2020, doi: 10.1177/1550147720928897.
C. Aracena, F. Villena, F. Arias, and J. Dunstan, “Applications of machine learning in healthcare”, Revista Medica Clinica Las Condes, vol. 33, n° 6, pp. 568–575, 2022, doi: 10.1016/j.rmclc.2022.10.001.
B. L. Jimma, “Artificial intelligence in healthcare: A bibliometric analysis”, Telematics and Informatics Reports, vol. 9, p. 100041, 2023, doi: 10.1016/j.teler.2023.100041.
F. Di Martino, F. Delmastro, and C. Dolciotti, “Explainable AI for malnutrition risk prediction from m-Health and clinical data”, Smart Health, p. 100429, 2023, doi: 10.1016/j.smhl.2023.100429.
R. Mirzaeian, R. Nopour, Z. Asghari Varzaneh, M. Shafiee, M. Shanbehzadeh, and H. Kazemi-Arpanahi, “Which are best for successful aging prediction? Bagging, boosting, or simple machine learning algorithms?”, Biomed Eng Online, vol. 22, n° 1, 2023, doi: 10.1186/s12938-023-01140-9.
W. Sun et al., “Towards artificial intelligence-based learning health system for population-level mortality prediction using electrocardiograms”, NPJ Digit Med, vol. 6, n° 1, 2023, doi: 10.1038/s41746-023-00765-3.
M. Hussain et al., “Machine learning based efficient prediction of positive cases of waterborne diseases”, BMC Med. Inform. Decis Mak, vol. 23, n° 1, Dec. 2023, doi: 10.1186/s12911-022-02092-1.
S. U. Nisa, A. Mahmood, F. S. Ujager, and M. Malik, “HIV/AIDS predictive model using random forest based on socio-demographical, biological and behavioral data”, Egyptian Informatics Journal, vol. 24, n° 1, pp. 107–115, 2023, doi: 10.1016/j.eij.2022.12.005.
E. J. Kcomt-Ponce, E. L. Huamaní, and A. Delgado, “Implementation of Machine Learning in Health Management to Improve the Process of Medical Appointmentsin Perú”, International Journal of Emerging Technology and Advanced Engineering, vol. 12, n° 2, pp. 74–85, 2022, doi: 10.46338/ijetae0222_09.
S. Mohapatra, A. Sahoo, S. Mohanty, and D. Singh, “IoT Enabled Ubiquitous Healthcare System using Predictive Analytics”, Procedia Computer Science, Elsevier B.V., pp. 1581–1590, 2022. doi: 10.1016/j.procs.2023.01.136.
S. Panicacci, M. Donati, F. Profili, P. Francesconi, and L. Fanucci, “Trading-off machine learning algorithms towards data-driven administrative-socio-economic population health management”, Computers, vol. 10, n° 1, pp. 1–21, 2021, doi: 10.3390/computers10010004.
D. R. S. Serrano, J. C. Rincón, J. Mejía-Restrepo, E. R. Núñez-Valdez, and V. García-Díaz, “Forecast of Medical Costs in Health Companies Using Models Based on Advanced Analytics”, Algorithms, vol. 15, n° 4, 2022, doi: 10.3390/a15040106.
M. L. Hoffmann Souza, C. A. da Costa, and G. de Oliveira Ramos, “A machine-learning based data-oriented pipeline for Prognosis and Health Management Systems”, Computers in Industry, vol. 148. Elsevier B.V., 2023. doi: 10.1016/j.compind.2023.103903.
N. Menteş, M. A. Çakmak, and M. E. Kurt, “Estimation of service length with the machine learning algorithms and neural networks for patients who receiving home health care,” Eval Program Plann, vol. 100, 2023, doi: 10.1016/j.evalprogplan.2023.102324.
J. Dunstan et al., “Predicting no-show appointments in a pediatric hospital in Chile using machine learning”, Health Care Manag Sci, vol. 26, n° 2, pp. 313–329, 2023, doi: 10.1007/s10729-022-09626-z.
G. Vos, K. Trinh, Z. Sarnyai, and M. Rahimi Azghadi, “Generalizable machine learning for stress monitoring from wearable devices: A systematic literature review”, International Journal of Medical Informatics, vol. 173, Elsevier Ireland Ltd, 2023. doi: 10.1016/j.ijmedinf.2023.105026.
V. C. Parro, M. L. M. Lafetá, F. Pait, F. B. Ipólito, and T. N. Toporcov, “Predicting COVID-19 in very large countries: The case of Brazil”, PLoS One, vol. 16, n° 7, 2021, doi: 10.1371/journal.pone.0253146.