La pirolisis y otros métodos para el aprovechamiento de residuos de neumáticos como fuente de energía para la industria. Una revisón
A review of pyrolysis and other methods of using waste tyre as an energy source for industry
Contenido principal del artículo
Resumen
Dado el continuo crecimiento del parque automotor a nivel mundial, constantemente se evidencia la problemática asociada a la disposición final de los residuos de neumáticos; que no solo se generan en altos volúmenes, sino que también representan una problemática para su adecuada disposición o aprovechamiento. El objetivo de este artículo de revisión se concentró en identificar las principales técnicas de aprovechamiento para este tipo de residuos a partir de su aporte energético y potencial uso en la industria, haciendo un énfasis particular en la técnica de pirolisis, comparando diferentes tipos de reactores y evaluando los rendimientos energéticos encontrados para la generación del aceite pirolítico; Identificando de esta forma técnicas adicionales con alta importancia actual a nivel internacional que podrían ser implementadas en un país como Colombia. Lo anterior, arrojó que las técnicas de pirolisis de lecho fijo y cama fluidizada son las más estudiadas, las cuales han mostrado resultados entre el 55 % y 60 % de rendimiento con temperaturas optimas de calentamiento entre 450 °C y 550 °C. También es importante resaltar aquellos parámetros que influyen en el rendimiento final del aceite el cual dada la información recolectada puede deberse a tamaños de partícula pequeños, tiempos de calentamiento cortos de hasta 5 segundos ,composición de la materia prima como son productos con mayor porcentaje de caucho natural permiten obtener un producto de mayor calidad con un poder calorífico de hasta 40MJ/kg el cual es comparable con combustibles como el biodisel , keroseno, fuel oil ligero, entre otros para ser usado como fuente de energía. Partiendo del alto porcentaje de carbono que contienen los neumáticos (de aproximadamente un 29,40%), lo cual lo hace un buen candidato para la producción de energía. Es por esto que se encuentra en la pirolisis una estrategia viable de aprovechamiento energético para los residuos de neumáticos, generando a través de esta técnica un aprovechamiento eficiente de éstos como fuente de energía.
Palabras clave:
Descargas
Detalles del artículo
Referencias (VER)
[2] A. Siddika, M. A. Al Mamun, R. Alyousef, Y. H. M. Amran, F. Aslani, and H. Alabduljabbar, “Properties and utilizations of waste tire rubber in concrete: A review,” Constr. Build. Mater., vol. 224, pp. 711-731, 2019, doi: 10.1016/j.conbuildmat.2019.07.108.
[3] J. S. Yadav and S. K. Tiwari, “The impact of end-of-life tires on the mechanical properties of fine-grained soil: A Review,” Environ. Dev. Sustain., vol. 21, no. 2, pp. 485-568, 2019, doi: 10.1007/s10668-017-0054-2.
[4] S. M. S. M. K. Samarakoon, P. Ruben, J. Wie, and L. Evangelista, “Case Studies in Construction Materials Mechanical performance of concrete made of steel fi bers from tire waste,” Case Stud. Constr. Mater., vol. 11, p. e00259, 2019, doi: 10.1016/j.cscm.2019.e00259.
[5] E. B. Machin, D. T. Pedroso, and J. A. de Carvalho, “Energetic valorization of waste tires,” Renew. Sustain. Energy Rev., vol. 68, no. December 2015, pp. 306-315, 2017, doi: 10.1016/j.rser.2016.09.110.
[6] M. Policella, Z. Wang, K. G. Burra, and A. K. Gupta, “Characteristics of syngas from pyrolysis and CO 2 -assisted gasification of waste tires,” Appl. Energy, vol. 254, no. July, p. 113678, 2019, doi: 10.1016/j.apenergy.2019.113678.
[7] W. Ruwona, G. Danha, and E. Muzenda, “ScienceDirect ScienceDirect ScienceDirect A Review on Material and Energy Recovery from Waste Tyres A Review on Material and Energy Recovery from Waste Tyres,” Procedia Manuf., vol. 35, pp. 216-222, 2019, doi: 10.1016/j.promfg.2019.05.029.
[8] M. S. Hossain, M. R. Islam, M. S. Rahman, M. A. Kader, and H. Haniu, “Biofuel from Co-pyrolysis of Solid Tire Waste and Rice Husk,” Energy Procedia, vol. 110, no. December 2016, pp. 453-458, 2017, doi: 10.1016/j.egypro.2017.03.168.
[9] S. Uçar and S. Karagöz, “Co-pyrolysis of pine nut shells with scrap tires,” Fuel, vol. 137, pp. 85-93, 2014, doi: 10.1016/j.fuel.2014.07.082.
[10] A. Hasan and I. Dincer, “ScienceDirect Assessment of an Integrated Gasification Combined Cycle using waste tires for hydrogen and fresh water production,” Int. J. Hydrogen Energy, vol. 44, no. 36, pp. 19730-19741, 2019, doi: 10.1016/j.ijhydene.2019.05.075.
[11] K. Winternitz, M. Heggie, and J. Baird, “Extended producer responsibility for waste tyres in the EU: Lessons learnt from three case studies - Belgium, Italy and the Netherlands,” Waste Manag., vol. 89, pp. 386-396, 2019, doi: 10.1016/j.wasman.2019.04.023.
[12] G. Jaime, P. Arroyave, S. Milena, V. Restrepo, D. Hernán, and G. Vásquez, “Aplicaciones de caucho reciclado€¯: una revisión de la literatura Applications of recycled rubber€¯: a literature review Ciencia e Ingeniería Neogranadina,” pp. 27-50, 2017.
[13] L. A. S. Tendencias and M. D. E. Desarrollo, “Facultad de Ciencias Exactas Y Naturales MUNDIALES DE DESARROLLO SOSTENIBLE Article history€¯:,” no. November 2013, 2015.
[14] “res_1326_de_2017-llantas_usadas.pdf.” .
[15] E. E. Okoro, N. O. Erivona, S. E. Sanni, K. B. Orodu, and K. C. Igwilo, “Modification of waste tire pyrolytic oil as base fluid for synthetic lube oil blending and production: waste tire utilization approach,” J. Mater. Cycles Waste Manag., no. 0123456789, 2020, doi: 10.1007/s10163-020-01018-1.
[16] L. Patiño and M. Rodríguez, “Llantas usadas: materia prima para pavimentos y múltiples ecoaplicaciones,” Rev. Ontare, vol. 5, pp. 1-34, 2018, doi: 10.21158/23823399.v5.n0.2017.2004.
[17] G. Castro, “M E C a N I C a F . I . U . B . a . I N G . G U I L L E R M O C a S T R O,” Diciembre, pp. 1-57, 2008.
[18] P. T. Williams, “Pyrolysis of waste tyres: A review,” Waste Manag., vol. 33, no. 8, pp. 1714-1728, 2013, doi: 10.1016/j.wasman.2013.05.003.
[19] D. Landi, M. Marconi, I. Meo, and M. Germani, “Reuse scenarios of tires textile fibers: An environmental evaluation,” Procedia Manuf., vol. 21, no. 2017, pp. 329-336, 2018, doi: 10.1016/j.promfg.2018.02.128.
[20] V. Malijonyte, E. Dace, F. Romagnoli, I. Kliopova, and M. Gedrovics, “A Comparative Life Cycle Assessment of Energy Recovery from end-of-life Tires and Selected Solid Waste,” Energy Procedia, vol. 95, pp. 257-264, 2016, doi: 10.1016/j.egypro.2016.09.064.
[21] R. Krzy, H. Jouhara, N. Spencer, and D. Czajczy, “Use of pyrolytic gas from waste tire as a fuel€¯: A review,” vol. 2025, 2017, doi: 10.1016/j.energy.2017.05.042.
[22] G. Castro, “M E C a N I C a F . I . U . B . a . I N G . G U I L L E R M O C a S T R O,” Diciembre, pp. 1-57, 2008, [Online]. Available: http://campus.fi.uba.ar/file.php/295/Material_Complementario/Materiales_y_Compuestos_para_la_Industria_del_Neumatico.pdf.
[23] P. T. Williams and A. J. Brindle, “Aromatic chemicals from the catalytic pyrolysis of scrap tyres,” vol. 67, pp. 143-164, 2003.
[24] E. Muzenda, “A Comparative Review of Waste Tyre Pyrolysis , Gasification and Liquefaction ( PGL ) Processes,” 2014.
[25] E. B. Machin, D. T. Pedroso, and J. A. de Carvalho, “Technical assessment of discarded tires gasification as alternative technology for electricity generation,” Waste Manag., vol. 68, pp. 412-420, 2017, doi: 10.1016/j.wasman.2017.07.004.
[26] P. Nowakowski, “The influence of preliminary processing of end-of-life tires on transportation cost and vehicle exhausts emissions,” 2020.
[27] K. Street, “2017 U . S . Scrap Tire Management Summary About the U . S . Tire Manufacturers Association,” 2018.
[28] N. Puy, J. D. Martı, V. Navarro, and A. M. Mastral, “Waste tyre pyrolysis - A review,” vol. 23, pp. 179-213, 2013, doi: 10.1016/j.rser.2013.02.038.
[29] N. T. y M. Wilson, “Analisis del riesgo de la gasificacion y pirolisis,” Gaia, p. 18, 2017, [Online]. Available: http://www.no-burn.org/wp-content/uploads/Gasificaci.
[30] V. Belgiorno, G. De Feo, C. Della Rocca, and R. M. A. Napoli, “Energy from gasification of solid wastes,” vol. 23, pp. 1-15, 2003.
[31] A. Franco and N. Giannini, “Perspectives for the use of biomass as fuel in combined cycle power plants,” vol. 44, pp. 163-177, 2005, doi: 10.1016/j.ijthermalsci.2004.07.005.
[32] S. Porto et al., “Optimizing H 2 Production from Waste Tires via Combined Steam Gasification and Catalytic Reforming,” pp. 2232-2241, 2011.
[33] A. Mohajerani, L. Burnett, J. V Smith, S. Markovski, and G. Rodwell, “Resources , Conservation & Recycling Recycling waste rubber tyres in construction materials and associated environmental considerations€¯: A review,” Resour. Conserv. Recycl., vol. 155, no. January, p. 104679, 2020, doi: 10.1016/j.resconrec.2020.104679.
[34] T. Ratnakiran, Wankhade D Bhattacharya, “Pyrolysis oil an emerging alternate fuel for future (Review),
” J. Pharmacogn. Phytochem., vol. 6, no. 6, pp. 239-243, 2017, [Online]. Available: http://www.phytojournal.com/archives/2017/vol6issue6/PartD/6-4-382-970.pdf.
[35] C. T. DANIEL and D. F. CAMILO, “DISEÑO CONCEPTUAL DE UNA PLANTA PARA EL APROVECHAMIENTO DE CAUCHO MOLIDO DE NEUMÁTICOS USADOS A PARTIR DE PIRÓLISIS,” 2018.
[36] A. Alsaleh and M. L. Sattler, “Waste Tire Pyrolysis€¯: Influential Parameters and Product Properties,” pp. 129-135, 2014, doi: 10.1007/s40518-014-0019-0.
[37] F. Esaclona, S. Rodríguez, J. Antonio, and A. Beatón, “Reactores En Lecho Fluidizado,” Tecnol. Química, vol. XXIX, pp. 205-212, 2009, doi: 10.1590/2224-6185.2009.0.%x.
[38] X. Dai, “Pyrolysis of waste tires in a circulating fluidized-bed reactor,” vol. 26, pp. 385-399, 2001.
[39] J. I. Osayi, S. Iyuke, M. O. Daramola, P. Osifo, I. J. Van Der Walt, and S. E. Ogbeide, “Pyrolytic conversion of used tyres to liquid fuel€¯: characterization and effect of operating conditions,” J. Mater. Cycles Waste Manag., vol. 20, no. 2, pp. 1273-1285, 2018, doi: 10.1007/s10163-017-0690-5.
[40] A. Ferna, M. V Navarro, R. Murillo, T. Garcı, and A. M. Mastral, “Waste Tire Pyrolysis€¯: Comparison between Fixed Bed Reactor and Moving Bed Reactor,” pp. 4029-4033, 2008.
[41] S. Galvagno, S. Casu, T. Casabianca, A. Calabrese, and G. Cornacchia, “Pyrolysis process for the treatment of scrap tyres€¯: preliminary experimental results,” vol. 22, pp. 917-923, 2002.
[42] H. Hu et al., “Chemosphere The fate of sulfur during rapid pyrolysis of scrap tires,” Chemosphere, vol. 97, pp. 102-107, 2014, doi: 10.1016/j.chemosphere.2013.10.037.
[43] C. Ilk, “Optimization of fuel production from waste vehicle tires by pyrolysis and resembling to diesel fuel by various desulfurization methods,” vol. 102, pp. 605-612, 2012, doi: 10.1016/j.fuel.2012.06.067.
[44] Y. Kar, “Catalytic pyrolysis of car tire waste using expanded perlite,” Waste Manag., vol. 31, no. 8, pp. 1772-1782, 2011, doi: 10.1016/j.wasman.2011.04.005.
[45] J. Shah, M. R. Jan, and F. Mabood, “Catalytic Pyrolysis of Waste Tyre Rubber into Hydrocarbons Via Base Catalysts,” vol. 27, no. 2, pp. 103-109, 2008.
[46] M. Rofiqul Islam, H. Haniu, and M. Rafiqul Alam Beg, “Liquid fuels and chemicals from pyrolysis of motorcycle tire waste: Product yields, compositions and related properties,” Fuel, vol. 87, no. 13-14, pp. 3112-3122, 2008, doi: 10.1016/j.fuel.2008.04.036.
[47] S. Chouaya, M. A. Abbassi, R. B. Younes, and A. Zoulalian, “Scrap Tires Pyrolysis: Product Yields, Properties and Chemical Compositions of Pyrolytic Oil,” Russ. J. Appl. Chem., vol. 91, no. 10, pp. 1603-1611, 2018, doi: 10.1134/S1070427218100063.
[48] F. J. W. David, “Evaluación de un reactor de lecho fluidizado en el proceso de pirólisis catalítica usando desecho de caucho de llanta,” Univ. los Andes, pp. 1-86, 2016.
[49] Q. Xue, T. J. Heindel, and R. O. Fox, “A CFD model for biomass fast pyrolysis in fluidized-bed reactors,” Chem. Eng. Sci., vol. 66, no. 11, pp. 2440-2452, 2011, doi: 10.1016/j.ces.2011.03.010.
[50] P. T. Williams and D. T. Taylor, “The pyrolysis of scrap automotive and heating rate on product composition,” vol. 69, pp. 1474-1482, 1990.