
15

TdeA

A proposal to generate the method code based 
on class diagram and java® meta-model1

Una propuesta para la generación del código de los métodos
 desde el diagrama de clases y el metamodelo de java®

Recibido: 11 de junio 2011
Aprobado: 26 de octubre 2011

Carlos Mario Zapata Jaramillo, 
Ph.D. en Ingeniería 

Andrés Felipe Muñetón Lopera, 
M. Sc. en Ingeniería de Sistemas

Abstract 
Code generation, one of the final phases of software development lifecycle, has been made using CASE 
tools. However, the method code has not been successfully accomplished in the well-known CASE tools. 
To meet this challenge, in several proposals researchers employ UML diagrams in order to generate some 
parts of the method code, even though UML diagrams are given in a non-standard use. We introduce, in 
this paper, a proposal to generate the method code from class diagrams (complemented with pre- and post-
conditions) and Java® meta-models. We exemplify the use of this proposal with a case study.
Keywords: CASE tools, class diagram, code generation, meta-modeling, pre- and post-conditions.

1 This paper is an English version of the paper “Generación del cuerpo de los métodos a partir de la semántica de las operaciones del 
diagrama de clases”, published on the journal Ingeniería e Investigación, volume 28, issue 3, 2008, pp. 58-63. The authors state that, 
besides translation, several amendments and minor additions have been included.

2 The authors belong to the Computational Language Group, Universidad Nacional de Colombia. E-mail: cmzapata@unal.edu.co, 
afmuneto@unal.edu.co



16

Carlos Mario Zapata Jaramillo, Andrés Felipe Muñetón Lopera TdeA

Resumen
La generación de código, una de las fases finales del ciclo de vida del software, se viene realizando mediante 
herramientas CASE. Sin embargo, el código de los métodos no se realiza de manera exitosa con las herra-
mientas CASE tradicionales. Como respuesta a este problema, existen propuestas que emplean algunos de 
los diagramas de UML para generar porciones del código de los métodos, pero esas propuestas emplean, con 
este fin, modelos o elementos que se alejan del estándar de UML. En este artículo se introduce una propuesta 
para generar el código de los métodos a partir del diagrama de clases (complementado con pre y post condi-
ciones) y el metamodelo de Java®. El uso de esta propuesta se ejemplifica con un caso de estudio.
Palabras clave: diagrama de clases, generación de código, herramientas CASE, Metamodelado, pre y 
postcondiciones.

Introduction
Software development lifecycle has the following 
phases: defi nition, analysis, design, construction, 
transition, and production. During the construc-
tion phase, the models defi ned in previous stages 
are used to generate an executable code of the fi nal 
application. Th is process is partially assisted by the 
well-known CASE tools. Some of these tools, like 
Rational Rose® (Quatrani, 2000), Together® (2011), 
Poseidon® (2011), and ArgoUML® (Robbins et al., 
1997) are capable of generating code in several lan-
guages like Java® or C++. Also, some platforms are 
used to perform such task; for example, NetBeans 
6.8 (2011).

Th e resulting code obtained from the above mentio-
ned CASE tools is still immature, and there are two 
reasons for this: most of the tools only generate code 
from class diagram—given that this diagram is struc-
turally similar to the source code—and the method 
contents from the generated code classes lack the 
method body—these CASE tools only include the 
head of the code. In the case of the NetBeans 6.8 
platform (2011), we can use a set of predefi ned “tem-
plates” included inside the “code generator” feature, 
but only in the development phase. We need, ins-
tead, tools to generate code from the design phase.

Th e software engineering community has reacted to 
these problems with new proposals that use other 
diagrams or elements in the code generation process. 
Th ree examples of these proposals are Fujaba® (Niere 
& Zündorf, 1999), rCos (Liu & Jifeng, 2005), and 
B-method (Mammar & Laleau, 2006).

Fujaba® (Niere & Zündorf, 1999) uses class diagram, 
and a non-standard combination of state machine 

and sequence diagram. Keeping in mind that the 
use of non-standard elements in UML standard dia-
grams poses a major usability problem in this CASE 
tool, the entire process is completely linked to custo-
mized versions of the UML standard, and changes to 
this standard will not be refl ected upon it. Also, the 
device selected to represent the body of the methods 
is a text with the same structure of the source code to 
be obtained. Th e invested eff ort in the task of model 
building with these additions is comparable to the 
invested eff ort in manually writing code.

Th e rCos (Liu & Jifeng, 2005) and the B-method 
(Mammar & Laleau, 2006) are similar proposals in 
that they both use UML diagram formalizations in 
order to generate code. Some of the formalized dia-
grams are class and sequence diagrams. Th ese propo-
sals, as in the case of Fujaba®, pose some problems:

• Th e method body is represented by a for-
mal language originated before the code 
generation process (with an invested time 
substantially longer than the time emplo-
yed in the manual encoding process).

• Th e process itself is restricted to methods 
with database semantics (for example, the 
insertion of a record in a database).

• Th e use of non-standard elements makes 
the code generation process dependent of 
customized versions of the artifacts.

• Th ere are no CASE tools that use this ap-
proach.

As a way to improve the code generation process and 
surpass the listed problems of previous proposals, 
we argue, in this paper, that the method code can 
be obtained from class diagram and pre- and post-
conditions belonging to the operations of such a dia-
gram. We also complement this approach by adding 



17

A proposal to generate the method code based on class diagram and java@meta-model TdeA

semantic information (represented by new elements) 
to the Java® meta-model expecting to match the cited 
post-conditions. Th is approach is shown by means of 
a case study.

Th e rest of the paper is structured like this: fi rst, we 
discuss the state-of-the-art in automated code gene-
ration; second, we propose a method to link class 
operations to code methods from pre- and post-
conditions; third, we propose a modifi cation to the 
Java® meta-model in order to include pre- and post-
condition associations; next, we present the relation-
ship between user models and Java® development 
platform; then, we outline a case study illustrating 
this proposal; and fi nally, we provide conclusions 
and future work perspectives.

Automated code generation
A code fragment belonging to a method in the Java® 
programming language looks like this:

public void saveUser(u:User) { 
Connection con = DriverManager.getCo-

nection(“”); PreparedStatement ps = con.
preparedStatement(“insert into usuarios values(?,?);”); 

ps.setString(1,u.getID()); 
ps.setString(2,u.getName()); 
ps.execute(); 
}

Th is method is used to insert a new user into an exis-
ting table, as a way to deal with database manage-
ment. Figure 1 shows a possible sequence diagram 
matching this method.

Figure 1. A possible sequence diagram for the saveUser method.

Most of well-known CASE tools exhibit capabili-
ties to draw diagrams like the one in fi gure 1, but 
only Together® (2011) and Fujaba® (Niere & Zün-
dorf, 1999) are able to generate Java® code from this 
diagram. Th e remaining tools might only generate 
incomplete source code from class diagram. When 
source code generation from sequence diagram is 
possible, the designer must add some special features 
to this code in order to complete it. In the previous 
example, some classes like DriverManager, Connec-
tion, and PreparedStatement, belonging to the Java® 
language, must be manually added to the resulting 
code. On the other hand, NetBeans 6.8 (2011) is 
unable to automatically generate such a code, since 
it does not match the predefi ned templates, which 

are: sample generator, constructor, override method, 
and add property.

On the other hand, Model-Driven Architecture 
(MDA) is an initiative of the Object Management 
Group (Kepple et al., 2003) intended to develop 
standards based on the idea that modeling is a better 
foundation for developing and maintaining systems. 
MDA suggests the use of profi les to adapt the bu-
siness area models (platform independent models—
PIM—in the jargon of MDA) to the programming 
language (platform specifi c models—PSM—as un-
derstood by MDA practitioners). Some of the well-
known CASE tools, for example Rational Rose® 
(Quatrani, 2000), exhibit capabilities to include 



18

Carlos Mario Zapata Jaramillo, Andrés Felipe Muñetón Lopera TdeA

profi les in order to complement the models with in-
formation about the targeted programming langua-
ge. However, even such capabilities are not enough 
to include the required information in the method 
to be generated. In the saveUser method, from the 
previous example, the information the designer must 
add belongs to Dynamic Link Libraries (DLL) of the 
Java® language, and this information is not suppor-
ted by any Java® profi le.

Diff erent to the source code previously stated, other 
kind of source code is related to calculus; for exam-
ple, the computation of the absolute value of a num-
ber or the result of an algebraic operation. Looking 
at the following expression of source code:

x:[ x = abs y]
If we have to program a method to explain this ex-
pression, we have to know the sense of the implicit 
operation; for example:

if 
y>= 0 --> x:=y 
|| y < 0 --> x:= -y 
endif

Th e process of recognizing the procedure to calculate 
the result of an operation, called refi nement, is not 
supported by most of CASE tools. Also, other pro-
posals as rCos (Liu & Jifeng, 2005) and B-method 
(Mammar & Laleau, 2006) employ a formalization 
of this refi nement process, but this process must be 
explicitly defi ned to complete the code generation. 
In these proposals, formalization is an intermediate 
representation of the source code, and it poses some 
drawbacks for the entire code generation process:

• Formal languages are more diffi  cult to manage 
than programming languages. Th e time the de-
signer must invest in the formalization process 
is longer than the time devoted to manual code 
writing.

• Formal languages do not have standard guideli-
nes for well-known CASE tools. Also, there are 
multiple notations of this kind of languages. 
If standardization is not possible in the code 
generation process, there will be a dependency 
on customized versions of the formal language.

• Both rCos (Liu & Jifeng, 2005) and B-method 
(Mammar & Laleau, 2006) are theoretical ap-
proaches, and there is no CASE tool supporting 
these theories.

Relationship among operations, 
from pre- and post-conditions
Every operation requires—as an executing initial 
condition—a set of states in the particular system it 
belongs to. After the execution of the operation, the 
system can remain the same or can become a new set 
of states. Th e initial set of initial conditions is named 
pre-conditions and the fi nal set of states is named 
post-conditions. Th e saveUser operation, previously 
defi ned, has the following discussed conditions:

saveUser (u:User){ 
pre: not exist u:User
post:u=User +{u}
}

User is a set of users that has been stored in the da-
tabase.

According to Morgan (1998), the specs are based on 
pre- and post-conditions. Th ose specs can be refi ned 
up to machine-understandable code, that is, a text 
that can be compiled and executed. When applying 
this concept to the saveUser operation, we must wri-
te down the following sequence of Java® commands 
to reach the post-condition (in this case, to store a 
new user in the database): (1) to create a connection 
to the database, (2) to prepare the query, and (3) to 
execute the query. To accomplish the initiation of the 
execution of the query (3rd step), the system needs 
to reach the states demanded by the post-condition 
in the second step. Similarly, the preparation of the 
query (2nd step) can only be initiated when the post-
condition in the fi rst step is reached.

Due to the fact that we need to express pre- and post-
conditions in the Java® language, we propose an ins-
tance of the Java® meta-model, in order to describe 
classes belonging to the java.sql package. Figure 2 
shows the part of this instance, including the classes 
used by the saveUser operation.

We must highlight the fact that one parameter, in 
fi gure 2, acts as a relationship connector between 
one method (belonging to a class) and another class. 
In the same line of reasoning, one role acts as a na-
vigation connector; for example, by means of re-
turnParameter the system is capable of executing a 
new method. If we assume that returnParameter is 



19

A proposal to generate the method code based on class diagram and java@meta-model TdeA

the method post-condition, then all the methods 
represented in Figure 2 are linked by their post-con-
ditions. Figure 3 shows the pre- and post-condition 

specs to the saveUser operation. In this Figure, pre- 
and post-conditions participate in the relationships 
among methods.

c1:JavaClass

c2:JavaClass

c3:JavaClass

+name = DriverManager

+name = getConnection
+isStatic = true

+name = Connection

+name = PreparedStatement

+type

+name = setDouble

+name = setString
+name = execute

+name = preparedStatement

m1:Method

m5:Method

m2:Method

m4:Method
m3:Method

+returnParameter

+returnParameter

p1:Parameter

p2:Parameter

Figure 2. Part of the Java® meta-model instance used by the saveUser operation.

getConnection( ) (
  pre= ()
  post= :Connection
  }

preparedStatement() {
  pre= con:Connection
  post= :PreparedStatement
}

execute() {
  pre= :PreparedStatement
  post= :objects u { :Object}
}

Figure 3. Pre- and post-condition specs for the saveUser method.
Figure 3 is the base to generate the following Java® code:

Connection con = DriverManager.getConnection();
PreparedStatement ps = con.preparedStatement(“”);
ps.execute();

Th e general process followed in order to generate this 
code was:

• To identify the execute operation as the one 

for saving elements in the database.
• To outline the fact that the execute opera-

tion is non-static, and, consequently, it has 
(as a pre-condition) an object creation of 
the class PreparedStatement. In addition, we 
must outline that preparedStatement opera-
tion has, as a post-condition, the creation 
of a PreparedStatement object.



20

Carlos Mario Zapata Jaramillo, Andrés Felipe Muñetón Lopera TdeA

• To note that preparedStatement operation is 
non-static, and it has, as a pre-condition, 
an object creation of the class Connection. 
Again, we have to note that the getConnec-
tion operation has, as a post-condition, the 
creation of a Connection object.

• Finally, to evidence that getConnection ope-
ration is static, so it does not require any 
pre-condition.

If we compare the suggested code with the one de-
fi ned earlier, we discover some missing facts. For 
example, the setString operation belonging to the 
PreparedStatement class is not generated by the des-
cribed process.

To summarize, we can establish that an O’ operation 
subset can be created from an O operation set—and 
the O set has a post-condition named P. All the ope-
rations belonging to O’ subset are linked by means 
of pre- and post-conditions, in such a way that is 
possible to reach a P post-condition. However, as we 
already present, the O’ subset does not include all the 
needed operations to reach the post-condition P. As 
a consequence, the number of relationships among 
Java® operations might not be enough to generate the 
entire code, and we need to supply additional infor-
mation to the process.

Adding pre- and post-condition 
associations to the Java® meta-
model
Th e process of code generation, when manually 
made, is full of previous knowledge assertions—on 
the part of the designer—about the encoding plat-

form. Th ese assertions are commonly found by the 
designer in the platform documentation, using the 
revision of the examples included on this documen-
tation.

Th e presence of these assertions makes diffi  cult to 
automate the encoding process. In other words, if 
we want to automatically generate code from mo-
dels, we will perhaps need to increase the contents of 
the meta-model with some of the designer’s previous 
knowledge. For example, in the saveUser method 
that we describe, the designer knows that the use 
of the execute method, from the PreparedStatement 
class, needs as a pre-condition the results of a setX() 
operation, where X can be String, Double, and Int, 
among others.

Figure 4 shows the modifi cations proposed for the 
Java® meta-model. In order to make explicit all the 
possible relationships among operations, we add pre- 
and post-condition associations to the Method class 
and the PreconditionGroup class. We also add the fo-
llowing OCL restriction, as a way to avoid the fact of 
a method being itself pre- or post-condition.

self.precondition -> forAll(m | m <> self ) and self.
postcondition -> forAll(m | m <> self )

Pre- and post-condition associations are used by the 
designer to store conditions that are not explicitly 
defi ned in the Java® platform structure. In addition, 
PreconditionGroup class is used to store groups of 
pre-conditions needed to initiate a method. Figure 
5 shows a portion of the refi ned Java® meta-model 
instance (the entire meta-model is illustrated in Fi-
gure 2). In Figure 5, we see the PreconditionGroup 
package belonging to m3 method of c3 JavaClass. In 
this case, m3 method can be initiated by the result of 
either m5 method or m4 method.



21

A proposal to generate the method code based on class diagram and java@meta-model TdeA

Figure 4. Modifi cations proposed to the Java® meta-model.

JavaPackage

JavaClass
+ownedOperation precondition

postcondition
operation

pre_group

+preconditionGroup PreconditionGroup

Method

Field
isFinal
isStatic

isPublic : Boolean
isFinal : Boolean
isAbstract : Boolean

isAbstract
isNative
isSinchronized
isStatic
isFinal

JavaParameter

preconditionGroup

m5:Method
name = setDouble

m4:Method

m3:Method

c3:JavaClass
+name = setString +name = PreparedStatement

+name = excute
pre_group

Figure 5. A portion of the Java® meta-model instance of Figure 2.

Relationship between user 
models and the Java® meta-
model platform
As a fi nal step in the code generation process, we pro-
pose to establish a relationship between the user mo-
del and the Java® meta-model instance. In this stage, 
a profi le is provided in order to associate the user 
specs to the several kinds of database management 
specs. Th is profi le can be generalized to meet another 
kind of specs, and fi gure 6 shows how it looks. In this 

fi gure, a Specifi cation has pre- and post-conditions, 
represented by means of the attributes pre and post.

Th e DBSpecifi cation class is the generalization of 
all possible user specs, in terms of database mana-
gement, and includes the database (represented by 
the DB attribute) and the Power Set (represented by 
the P(X) attribute). Th is class can be specialized into 
DDLSpecifi cation class (to modify the database) and 
DCLSpecifi cation class (to query the database). Fi-
nally, DDLSpecifi cation class can be specialized into 
three classes: UpdateSpecifi cation, InsertSpecifi cation, 
and DeleteSpecifi cation.



22

Carlos Mario Zapata Jaramillo, Andrés Felipe Muñetón Lopera TdeA

Figure 6. A profi le to associate user specs to database management specs.

Specification

DBSpecification

DDLSpecification DCLSpecification

UpdateSpecification InsertSpecification DeleteSpecification

# pre
# post

+ DB
+ P(X)

Th e aforementioned profi le can be handled using 
UML stereotypes, a special feature of UML. Figure 
7 shows the ManageUser class, belonging to the user 

model, which includes the saveUser operation. Th is 
fi gure also shows the java.sql.PreparedStatement class, 
which includes the execute method.

Figure 7. UML stereotypes of the operations belonging to two classes.

ManageUser

<<InsertSpecification>>saveUser()

java sql.PreparedStatement

<<DDLSpecification>> execute()

Figure 8 shows the relationship between the user 
model and the Java® meta-model instance. Due to 
the fact that InsertSpecifi cation class is invoked by 

the o1 operation, and simultaneously belongs to the 
specialization of the DDLSpecifi cation class, we have 
to select this class to represent the semantics of the 
saveUser operation.



23

A proposal to generate the method code based on class diagram and java@meta-model TdeA

Figure 8. A meta-model instance to explain the relationship between user model and Java® meta-model instance.

o1:Operation :InsertSpecification

:DeleteSpecification Generalization :UpdateSpecification

:DDLSpecification m3:Method

+name : String = saveUser

+name : String = execute

A case study
Figure 9 shows two classes of a user management 
class diagram. In this fi gure, User and UserManager 
classes have their components stereotyped, according 
to the profi le provided before. UserManager class has 
two operations: saveUser, the previously discussed 

stereotyped operation, and getUser, which has a ste-
reotype intended to retrieve a user from database by 
means of his/her user identifi cation. User class has 
only one stereotype belonging to the name of the 
class (<<Entity>> in fi gure 9.)

Figure 9. Two classes of the user management class diagram.

UserManager

<<Entity>>
User

identification : String
name : String

<<InsertSpecification>> saveUser( )
<<dclSpecification>> getUser( )

Following is the step-by-step encoding process of 
the getUser operation. Th e code is completed as its 
components are being found. Figure 10 shows an 
instance of the Java® meta-model with the pre- and 
post-conditions of the executeQuery method. Th e 
DCLSpecifi cation of this method is also included.

As we can see in fi gure 10, the executeQuery method 
is associated with DCLSpecifi cation object, which 
has the same semantics that the getUser operation of 
the UserManager class. Furthermore, executeQuery 

method has a ResultSet object as a post-condition 
and a PreparedStatement object as a pre-condition 
(because is non-static). Consequently, we obtain the 
following resulting code:

ResultSet resultSet = preparedStatement.execute-
Query();

Objects of the PreparedStatement class are created by 
means of the preparedStatement method of the Con-
nection class, as discussed earlier. Th is method requi-



24

Carlos Mario Zapata Jaramillo, Andrés Felipe Muñetón Lopera TdeA

res (because it is non-static) the creation of an object 
belonging to the Connection class. At this stage, the 
code of the getUser method is:

PreparedStatement preparedStatement = connec-
tion.preparedStatement();

ResultSet resultSet = preparedStatement.execute-
Query();
getConnection method is non-static (consequently, it 
has no pre-conditions) and belongs to the DriverMa-
nager class. Th is method also returns a Connection 
type object. After this analysis, the code of the getU-
ser method is:

preconditionGroup

m5:Method
name = setDouble

m4:Method
m6:Method

c3:JavaClass

p3:Parameter

+name = setString
+name = executeQuery

+name = PreparedStatement

+dclSpecification

+returnType

:DCLSpecification

c4:JavaClass

+annotateElement

com1:Comment
+ body = /* Generated Note: Use the ResultSet methods to obtain the data from the resulSet Object*/

Figure 10. Java® meta-model instance of the executeQuery method.

public User getUser(User u){
Connection connection = DriverManager.getCon-

nection();
PreparedStatement preparedStatement = connec-

tion.preparedStatement();
ResultSet resultSet = preparedStatement.execute-

Query();
}

Th is is the fi nal result of our proposal, but it is in-
complete. A message is added to the code in order 
to warn the designer about the need for complement 
the method code. Th e source of this message is the 
object com1 in Figure 10. Th e fi nal code of the getU-
ser method is:

public User getUser(User u){
Connection connection = DriverManager.getCon-

nection();
PreparedStatement preparedStatement = connec-

tion.preparedStatement();

ResultSet resultSet = preparedStatement.execute-
Query();

/* Generated Note: 
* Use the ResultSet methods to obtain the data 

from the resultSet object
*/
}

We can expect—from the aforementioned code—
that the getUser method can get a record from the 
database, but it is not stated that this record is a User 
object. Th e expected code of the getUser method will 
be:

Connection connection = DriverManager.getCon-
nection();

PreparedStatement preparedStatement = connec-
tion.preparedStatement();

ResultSet resultSet = preparedStatement.execute-
Query();

Usuario u = new Usuario();



25

A proposal to generate the method code based on class diagram and java@meta-model TdeA

if(next()){
u.setIdentifi cacion(resultSet.

getString(“identifi cacion”));
u.setNombre(resultSet.getString(“nombre”));
}
return u;

As we previously mentioned, the designer must com-
plete the code to have it ready to run. Before, we ex-
plored the connection between the resultSet method 
and the setX method, and we believe that this gap can 
be bridged by means of a careful analysis of the API 
Java® documentation. Th e automation of the rest of 
the proposal still needs some additional analysis.

Conclusions and future work
We discussed an approach to automate the code ge-
neration process by means of pre- and post-condi-
tions of the user’s model and the addition of some 
elements to the Java® meta-model (specifi cally, pre- 
and post-condition associations and the Precondi-
tionGroup class). We also used UML stereotypes to 
defi ne the semantics of the user class method. Th e 
mentioned approach has shown that it can be use-
ful to generate the body of the methods, one of the 
never-accomplished promises of CASE tools.

Th ere is some work to be done, as a way to improve 
the approach discussed:

• To implement a method to select the right 
semantics of the method, in situations where 
there is a “many-to-many” relationship bet-
ween the stereotype of the user model and the 
stereotype suggested by the Java® meta-model 
instance.

• To extend the suggested approach to non-data-
base management operations.

• To generalize this approach to other program-
ming platforms.

• To incorporate this approach into a CASE 
tool.

References
Kepple, A., Warmer, J. & Bast, W. (2003). MDA Explai-
ned, Th e Model Driven Architecture: Practice and Promise. 
Indianapolis: Addison-Wesley.

Liu, Z. & Jifeng, H. (2005). Towards a Rigorous Approach 
to UML-Based Development. Electronic Notes in Th eoreti-
cal Computer Science, Vol. 130, pp. 57–77.

Mammar, A. & Laleau, R. (2006). From a B formal speci-
fi cation to an executable code: applicational to the relatio-
nal database domain. Information and Software Technology, 
Vol. 48, No. 4, pp. 253-279.

Morgan, C. (1998). Programming from Specifi cations, 2nd 
Edition. Hampstead: Prentice Hall International.

NetBeans Platform. “Code Generator Integration Tuto-
rial”. http://platform.netbeans.org/tutorials/nbm-code-
generator.html [Consulted July 11th, 2011].

Niere, J. & Zündorf, A. (1999). Using Fujaba for the De-
velopment of Production Control Systems. Lecture Notes 
in Computer Science, Vol. 1779, pp. 181–191.

Poseidon®. http://www.gentleware.com [Consulted July 
11th, 2011].

Quatrani, T. (2000). Visual Modeling with Rational Rose 
2000 and UML. Reading: Addison-Wesley.

Robbins, J. E., Hilbert, D. M., & Redmiles, D. F. (1997). 
Argo: A Design Environment for Evolving Software Archi-
tectures. Proceedings of the 19th International Conference 
on Software Engineering (ICSE’97), Boston, USA, pp. 
600–601.

Together, Borland Software Corporation. “Borland To-
gether Architect”. http://www.borland.com/us/products/
together/index.html [Consulted July 11th, 2011].


