Casas, Karen, Durango, Claudia and Zapata, Carla (2019). Competencias requeridas por los geousuarios en los proyectos de Sistemas de Información Geográfica. Cuaderno Activa, 11, 81-101.

Cuaderno

Competencias requeridas por los geousuarios en los proyectos de Sistemas de Información Geográfica¹

Competencies that geousers require in Geographic Information Systems projects

Karen Fernanda Casas Correa², Claudia Elena Durango Vanegas³, Carla María Zapata Rueda⁴

Recibido: 20 de mayo de 2019 Aprobado: 17 de junio de 2019

Resumen: Las competencias son aptitudes que permiten integrar habilidades y conocimientos para lograr una acción eficaz tanto desde aspectos personales como profesionales. Además, se refieren al saber hacer, a la formación y modificación de las estructuras mentales de las personas. Las habilidades son aptitudes que facilitan y agilizan los procesos para llevar a cabo una actividad. Los Sistemas de Información Geográfica (SIG) son sistemas de información que permitan integrar diferentes áreas del conocimiento de las ciencias, con el fin de capturar, manipular, analizar y desplegar información de manera lógica y coordinada. Las competencias y habilidades en los proyectos SIG requieren un mapa general que ayude a identificar

las necesidades de desarrollo profesional y personal de los geousuarios. Por ello en este artículo se realiza una reflexión basada en una revisión de literatura para identificar las competencias y habilidades de los geousuarios, partiendo de una búsqueda sistematizada de la clasificación de las competencias, habilidades y destrezas que debe poseer un geousuario. Posteriormente, estas competencias son sintetizadas para lograr un mapa con las características esenciales de un profesional en el área de sistemas de información geográfica. Esta identificación de competencias ayudará a generar estrategias de optimización en el desempeño laboral y a mejorar el proceso de enseñanza de los SIG.

⁴ Ph.D en Psicología con Énfasis en Neurociencias. Universidad de San Buenaventura. Colombia, Medellín. Correo electrónico: carla. zapata@usbmed.edu.co. ORCID: https://orcid.org/0000-0002-4781-3362

¹ Este artículo es resultado del proyecto de investigación "Competencias Semat de un equipo de desarrollo de proyectos de sistemas de información geográfica" de la Universidad de San Buenaventura Medellín y de la tesis doctoral "Definición de buenas prácticas de desarrollo de sistemas de información geográfica utilizando el núcleo de Semat" de la Universidad Nacional de Colombia.

² Ingeniera en Telecomunicaciones. Universidad de San Buenaventura. Colombia, Medellín. Correo electrónico: kafer890@gmail.com. ORCID: https://orcid.org/0000-0003-1812-3909

³ Ph.D en Ingeniería – Sistemas e informática. Magíster en Ingeniería. Universidad de San Buenaventura. Colombia, Medellín. Correo electrónico: claudia.durango@usbmed.edu.co; cedurangov@unal.edu.co. ORCID: https://orcid.org/0000-0003-3116-9602

Palabras clave: competencia, habilidad, geousuario, geo-user, sistemas de información geográfica, SIG.

Abstract: The competences are actions that allow to integrate skills and knowledge to achieve an effective action from both personal and professional aspects. In addition, they refer to know-how, the formation and modification of mental structures of people. The skills are aptitudes that facilitate and streamline the processes to carry out an activity. The Geographic Information Systems (GIS) are information systems that allow to integrate different areas of knowledge of science, in order to capture, to manipulate, to analyze and to display information in a logical and coordinated way associating geodata. Competences and skills in GIS projects require a general map that helps identify the professional and personal development needs of geousers requirements. Therefore, in this article a reflection based on literature review is carried out to identify the skills and abilities of the users, based on a systematic search of the classification of the skills, abilities, and skills that a user must have. Subsequently, these competences are synthesized to achieve a map with the essential characteristics of a professional in geographic information systems. This identification of skills will help to generate strategies for optimizing work performance and improve the GIS teaching

Keywords: competence, skill, ability, geographic information systems, GIS

Introducción

Las competencias tienen enfoques y significados terminológicos diferentes en contextos socioculturales. Desde la perspectiva de la psicología pedagógica, la competencia se entiende como una construcción teórica y compleja que incluye conocimientos, capacidades, comprensión, habilidades, acciones, experiencias y motivación según los desafíos de las situaciones del mundo real (Wikle y Fagin, 2015). Por lo tanto, la competencia se define como una disposición cognitiva específica al contexto que permite a los individuos lidiar de manera apropiada y exitosa con situaciones desconocidas y tipos particulares de problemas en diferentes dominios (Tobón, 2008). Por su parte, las habilidades son producto de la inteligencia y de la capacidad para realizar una tarea de manera exitosa mediante la práctica de cambiar los desafíos y los esfuerzos requeridos para llevarla a cabo. Por ello, en la literatura se encuentra que las habilidades se definen en términos de experiencia y/o conocimiento necesario para cumplir una labor. Además, se considera que los atributos de una persona como el liderazgo y la facilidad para comunicarse son habilidades esenciales en los perfiles laborales (Wikle y Fagin, 2015).

Los Sistemas de Información Geográfica (SIG) son casos especiales de los sistemas de información tradicionales, con capacidad de integrar datos descriptivos y espaciales. Los SIG son un apoyo importante en la toma de decisiones, especialmente para análisis espaciales. Por ello su aplicación se relaciona con diversas áreas del conocimiento como: salud, hidrología, ingeniería y gestión territorial, entre otras (Durango y Zapata, 2015). En sentido estricto, un SIG es un sistema de información capaz de integrar, almacenar, editar, analizar, compartir y mostrar la información geográficamente referenciada. Un geousuario es una persona que tiene roles en un equipo de desarrollo de proyectos SIG, son personas con habilidades para adquirir, almacenar, analizar, mantener, actualizar y geovisualizar geodatos, buscando una planeación eficiente de modelos geográficos de la Tierra. Por ello, los SIG son herramientas que permiten a los geousuarios crear consultas interactivas, analizar la información espacial, editar geodatos y mapas y geovisualizar los resultados de estas operaciones.

La educación en SIG para Colombia se caracteriza por el esfuerzo de los individuos en colaboraciones a pequeña escala entre actores académicos y empresariales, para definir el dominio del conocimiento y diseñar currículos apropiados para la enseñanza de SIG. De igual manera, se encuentran colaboraciones a mayor escala con un enfoque curricular, motivadas específicamente por la ausencia de literatura instructiva apropiada para facilitar el aprendizaje de SIG (Tate y Jarvis, 2017). En el año 2006, se publicó el Cuerpo del

Conocimiento (BoK, por sus siglas en inglés) como la primera compilación completa de fundamentos conceptuales y competencias que debe desarrollar un geousuario para poseer las capacidades necesarias para implementar o aplicar un SIG. Sin embargo, la compilación de un BoK en un campo dinámico como los SIG tiene problemas debido a la carencia de un elemento estático para controlar y medir el comportamiento (Wallentin, Hofer y Traun, 2015). Por lo anterior, se requiere definir las competencias y habilidades académicas para mejorar la comprensión de conocimiento geográfico, con el fin de generar un currículo integrado y explícito (Waters, 2013). Por ello, el dominio del conocimiento es la principal dificultad de la enseñanza en SIG porque se redefine y reconfigura progresivamente con el tiempo (Plessis y Van Niekerk, 2012) y su objetivo principal es desarrollar las competencias y habilidades necesarias para que un geousuario tenga autonomía para desempeñarse en el área cambiante de los SIG.

En este artículo se presenta una reflexión basada en una revisión de literatura para la implementación de una lista detallada de las competencias y habilidades principales de un geousuario, como una base de referencia adecuada y oportuna para el dominio general y particular en el proceso educativo de los profesionales en SIG. Este mapa general de competencias se construye partiendo de una búsqueda sistematizada de literatura científica sobre la clasificación de las competencias, las habilidades y las destrezas que debe poseer un especialista en SIG, las cuales posteriormente se recopilan para componer un mapa final de las características esenciales de un profesional en el área SIG.

El artículo se organiza de la siguiente manera: en la sección 2 se presenta el método de revisión de literatura, donde se explica el método de búsqueda de información y se identifican las competencias y habilidades requeridas por los geousuarios; en la sección 3 se exponen los resultados, donde se presenta el mapa final con las competencias y habilidades requeridas por un geousuario; la sección 4 contiene un análisis de los resultados encontrados. Finalmente, en la sección 5 se presentan las conclusiones y el trabajo futuro.

Metodología

Para la revisión de literatura se seleccionó el método de Kitchenham (Brereton, Kitchenham, Budgen, Turner y Khalil, 2007; Kitchenham, 2004; Kitchenham et al., 2009) como un medio para identificar, evaluar e interpretar las investigaciones relevantes para dar respuesta a las preguntas de investigación o áreas temáticas particulares o fenómenos de interés. Los estudios individuales que contribuyen a una revisión sistemática son llamados estudios primarios; una revisión sistemática es una forma de estudio secundario.

La revisión de literatura se enfoca en identificar las competencias, habilidades y destrezas de los geousuarios, se parte de una búsqueda sistémica de fuentes científicas que realizan una clasificación de estos conceptos. Posteriormente se sintetizan para obtener un mapa de las características esenciales de un profesional en el área de sistemas de información geográfica. Lo anterior, se realiza buscando generar una lista de competencias, habilidades y destrezas esenciales en un profesional del área de los SIG. En la revisión de literatura se busca validar y dar respuesta a las siguientes preguntas que corresponden con los objetivos que se van a investigar:

Pregunta 1: ¿Cuáles son las competencias fundamentales de un geousuario para dar respuesta a las necesidades del mercado laboral actual?

Pregunta 2: ¿Se encuentran correctamente delimitados los conocimientos esenciales para cada uno de los roles de un equipo de desarrollo de proyectos SIG?

Pregunta 3: ¿Cuáles son las metodologías de enseñanza exitosas para desarrollar las competencias principales de un profesional en SIG?

En la revisión de literatura se obtuvieron los estudios relevantes para dar respuesta a las preguntas formuladas o similares, lo que permitió obtener información importante para las conclusiones propuestas. A continuación se presentan las definiciones de: competencia, destreza, habilidad, currículo y sistemas de información geográfica.

- Competencia: Se refiere a la disposición cognitiva específica al contexto que permite enfrentar apropiadamente con situaciones desconocidas y tipos particulares de problemas (Bosque et al., 2015).
- Habilidad: Se refiere a experiencia y/o conocimiento necesarios para cumplir una labor (Wikle y Fagin, 2015).
- Destreza: Se refiere al proceso de reunir las condiciones para aprender y cultivar distintos campos del conocimiento (Wikle y Fagin, 2015).
- Currículo: Eventos planeados con la intención de tener consecuencias educativas en los estudiantes. Es un plan de acción pedagógica orientado a las actividades de aprendizaje, que contempla los indicadores de evaluación, del material didáctico y de los manuales de estudio (Torrijo, 2015).

Estrategia de búsqueda.

La búsqueda en las bases de datos científicas se llevó a cabo consultando los términos clave descritos en la Tabla 1. Con la búsqueda de estos términos se buscó responder las preguntas de investigación formuladas. Posteriormente, se utilizaron sinónimos de dichas palabras para formar frases con sentido similar, pero expresadas con palabras equivalentes. Lo anterior se realizó tratando de ampliar la búsqueda y obtener la mayor cantidad de información posible. Asimismo, se utilizaron conectores como o e y para expresar relación de inclusión y exclusión entre los términos utilizados.

La búsqueda se realizó en internet consultando cada combinación de palabras en las siguientes bases de datos científicas: Journal of Real Estate, Academia, CiteSeer, Dialnet, Digital Earth, EEES, EUGISES, IEEE, Springer Link, OSGeo, Redalyc, Research Gate, Science Direct, Scientific Research, Taylor & Francis, Wiley Online Library. Además, se revisaron las referencias bibliográficas de los documentos más relevantes para identificar otros estudios o fuentes que permitan ampliar los resultados.

Tabla 1. Palabras clave en la búsqueda

Palabra	as clave
Syllabus	Currículo
Competency	Competencia
Professional	Habilidad
Curriculum	Destreza
Skills	Requerimientos
Need	SIG
GIS	Trabajo / Empleo
Job	Empleador
Employers	Profesores
Education	Pedagogía
GIS Environment	Universitario
University	Equipo de Trabajo
Workforce	Framework
Assessment	Role for GIS
Training	Teaching Gis
Certification	Pedagology
GI Education	Core GIS

Fuente: Elaboración propia

Figura 1. Logos bases de datos científicas utilizadas. Fuente: Elaboración propia

Clasificación de las investigaciones.

En la primera etapa, la revisión inicial se enfoca en el título, las palabras claves y la lectura del resumen de cada estudio encontrado. Los artículos encontrados se almacenan buscando que cumplan con la condición de responder a alguna de las

preguntas de investigación. En total, se obtuvieron 206 artículos que cumplían con esta condición.

En la segunda etapa se excluyeron las fuentes irrelevantes, eliminando los artículos duplicados y la lista completa de información primaria y se revisó sistemáticamente siguiendo el siguiente orden:

- Resumen
- Introducción
- Conclusiones
- Cuerpo del artículo

A cada una de las actividades anteriores se le aplicaron los criterios de inclusión o exclusión:

- Se define una lista de competencias, habilidades o destrezas que requiere un geousuario.
- Se especifican los límites entre los diferentes roles de un equipo de trabajo SIG.

- Se enumeran las competencias, habilidades o destrezas dependiendo del nivel de estudios que posee el geousuario.
- Se presenta una metodología pedagógica para desarrollar los conocimientos esenciales de un geousuario.
- Se propone o se revisa el contenido curricular óptimo para desarrollar completamente las capacidades de un Especialista SIG.
- Se cuenta con una fecha de publicación inferior a 5 años.

Los artículos que resultaron de esta segunda etapa se analizaron en su totalidad, buscando que cumplieran con al menos uno de los criterios de inclusión. Seguidamente, se clasificaron como artículos primarios. Los artículos que no cumplieron con al menos uno de los criterios se almacenaron como artículos secundarios para posteriores usos. Finalmente, el total de artículos relevantes para la investigación fueron 26 (véase la Tabla 2).

Tabla 2. Artículos principales para la revisión de literatura

Nombre	Autores	Año
A Model and Case Analysis of Geographical Information Systems Curricula in Management Schools	Avijit Sarkar y James Pick	2014
A New GISc Framework and Competency Set for Curricula	Heindrich du Plessis y Adriaan Van Niekerk	2014
A Research Agenda for Geospatial Technologies and Learning	Tom R. Baker, Sarah Battersby, Sarah W. Bednarz, Alec M. Bodzin, Bob Kolvoord, Steven Moore, Diana Sinton y David Uttal	2014
Addressing the challenges of a quarter century of giscience education a flexible higher education curriculum framework	Bert Veenendaal	2014
Changing the face of GIS education with communities of practice	Tate y Jarvis	2017
Critical GIS pedagogies beyond 'Week 10: Ethics'	Sarah Elwood y Matthew Wilson	2017
Curriculum Design for Upper- and Advanced-Lev- el GIS Classes Are New Skills being Taught and Integrated	Peter Kedron, Amy Frazier, Christopher Greene y Danielle Mitchell	2016
Education for Real-World Data Science Roles (Part 2) A Translational Approach to Curriculum Development	Liz Lyon y Eleanor Mattern	2017

Nombre	Autores	Año
Essential competences for GIS learning	Uwe Schulze, Detlef Kanwischer y Christoph Reudenbac	2013
Geographic Information Technology and Innovative Teaching Keys to Geography Degree Curriculum Reform	Carolina Martía, Jaume Feliua y Diego Vargaab	2014
Geospatial workforce training and development building tomorrow's workforce for spatial information technologies	Cyndi Gaudet	2014
GIS as a Job Growth Area for IT Professionals	Dr. Timur Mirzoev, Anthony Moore, Brianna Pryzbysz, Melissa Taylor y John Centeno	2015
Identifying Skill Requirements for GIS Positions A content Analysis of Job Advertisements	Jung Eun Hong	2015
Student perspectives on the teaching of geographical information	Mehmet Seremet y Brian Chalkley	2014
Universal Skills and Competencies for Geoscientist	Sharon Mosher y Jackson School	2015
Workforce Demand Assessment to Shape Future GI-Education	Barbara Hofer, Gudrun Wallentin, Christoph Traun y Josef Strobl	2014
A Quantitative Framework Of Skill Evaluation of IT Workforce	O Hyun Hwang	2014
Incorporating GIS as an Interdisciplinary Pedagogical Tool Throughout an MPA Program	Joseph Ferrandino	2018
Filling the gap. The geospatial skills shortage in New Zealand	Mairéad de Róiste	2014
GIS course planning. A comparison of syllabi at US college and universities	Thomas A. Wikle y Todd D. Fagin	2014
Tiered Internship Model for Undergraduate Students in Geospatial Science and Technology	Irina A. Kopteva, Donna Arkowski y Elaine L. Craft	2014
What is All This I Hear about Core Competencies for Library Planning and Assessment	Wanda V. Dole	2014
Assessment of Workforce Demands to Shape GIS&T Education	Gudrun Wallentin, Barbara Hofer y Christoph Traun	2015
Hard and Soft Skills in Preparing GIS Professionals Comparing Perceptions of Employers and Educa- tors	Thomas A. Wikle y Todd D. Fagin	2015
The actuality of determining information need in geographic information systems and science (GIS) A context	Maryam Nazari	2016

Resultados

La extracción de datos de los estudios seleccionados para abordar cada pregunta de investigación se realizó utilizando un cuadro compilador que incluye la información descrita en los artículos primarios con los resultados propuestos. La extracción de información se realiza de la siguiente forma:

- Se identifica en cada artículo la información que cumple con alguno de los objetivos de la revisión.
- En caso de que una publicación incluya detalles alrededor de las tres preguntas de investigación, se extrae su información en el cuadro final.

- Cada término u objetivo que se describe en varias publicaciones se incluye una sola vez en la tabla de extracción de información.
- En caso de que diversas publicaciones proporcionen los mismos detalles sobre alguna de las preguntas de investigación, se incluye la que brinde la mejor de la respuesta a la misma.

En la Tabla 3 se presentan las fuentes de información relevantes con los hallazgos encontrados enfocados al objetivo principal del proyecto de investigación: encontrar las competencias, habilidades y destrezas de un geousuario.

Tabla 3. Fuentes de información relevantes y hallazgos

Nombre	Autores	Halla	zgos
A New GISc Framework and Competency Set for Curricula Development at South African Univer- sities	H. du Plessis y A. Van Niekerk	Geografía Matemáticas Estadística Espacial Cinemática Imágenes áreas y foto- grametría Satélites y sensores re- motos Medidas Geométricas	Métodos básicos de Análisis Programación Sistemas de Georrefe- renciación Proyecciones Calidad de la Informa- ción Metadatos, estándares e infraestructura
Addressing the challenges of a quarter century of giscience education: A flexible higher education curriculum framework	B. Veenendaal	Fundamentos de Espacio y Lugar Mapping y Cartografía Almacenamiento y Recuperación de Datos Pensamiento Analítico y Crítico Solución de Problemas Evaluación y Toma de Decisiones Trabajo en Equipo	Análisis Geoespacial Modelamiento Espacial Geovisualización Geocomputación Programación GIS Administración GIS
Assessment of Workforce Demands to Shape GIS&T Education	G. Wallentin, B. Hofer y C. Traun	Métodos Analíticos Fundamentos Concep- tuales Cartografía y Visualiza- ción Aspectos de Diseño Modelamiento de Datos	Manipulación de Datos Geocomputación Información Geoespa- cial GIS&T y Sociedad Problemáticas Institucio- nales

Nombre	Autores	Halla	ızgos
Competence Dimensions in a Bologna-oriented GIS Education	U. Schulze, D. Kanwis- cher y C. Reudenbach	Información Geoespacial Geocomputación Manipulación de Información Modelamientos de Información Cartografía y Visualización Matemáticas Geografía	quisición de Datos
Education for Re- al-World Data Science Roles (Part 2): A Transla- tional Approach to Cu- rriculum Development	L. Lyon y E. Mattern	Javascript - Node Visualización Software Adobe Creati- ve MS Access Investigación Trabajo Colaborativo SQL MS Excel, R, SAS Stata, SPSS, Alteryx	Habilidades Multitarea y Priorización del Trabajo Solución de Problemas Hadoop Reducción de Mapas Python MS Excel, R, SAS D3 QGIS-ArcGIS-TopoJ- SON CSS - R - MS Excel
Geographic Information Technology and Innova- tive Teaching: Keys to Geography Degree Cu- rriculum Reform	C. Martí, J. Feliu y D. Varga	Desarrollar Evaluaciones Multicriterio Desarrollos Cartográficos Compilar y Administrar Información Geoespacial Conocimientos básicos en fenómenos geográficos Análisis de atributos multidimensionales	Imágenes Informativas Información Vector - Raster Crear - Actualizar y Ma- nipular Bases de Datos GIS Aplicar operaciones bá- sicas de Análisis
Geospatial workforce training and develop- ment building tomo- rrow's workforce for spatial information tech- nologies	S. Navigation y N. S. Route	Cartografía Programación Datos Geoespaciales y herramientas de procesamiento Fotogrametría Sensores Remotos y Aplicaciones Procesamiento de Información Espacial Topología Pensamiento Creativo	Habilidades de Investigación

ISSN: 2027-8101 - e-ISSN: 2619-5232. Enero-diciembre 2019 • página 89 de 154

Nombre	Autores	Halla	nzgos
GIS as a Job Growth Area for IT Professionals	T. Mirzoev, B. Pryzbysz y J. Centeno	Desarrollador de TI Datos Geográficos Mapping Programación de Sof- tware Representar la relación de distancia	Organización de datos geográficos Manipulación de Infor- mación espacial com- pleja Matemáticas Análisis Estadístico Habilidades SQL
Identifying Skill Requirements for GIS Positions: A Content Analysis of Job Advertisements	J. E. Hong	Web/Desarrollo de Aplicaciones Consultas a Bases de Datos Interpretación de Imágenes Aéreas Análisis de Datos Desarrollo de Bases de Datos Diseño/Customización Minería de Datos Análisis de Red Estadística Espacial Programación	Diseño de Mapas Producción de Mapas Web Mapping Interfaz de Usuario Arquitectura de Sistemas Manipulación de Datos Calidad de Datos Georreferenciación/Datum/Proyección Metadata/Estándares
Hard and Soft Skills in Preparing GIS Profes- sionals: Comparing Per- ceptions of Employers and Educators	T. A. Wikle y T. D. Fagin	Herramientas Software Análisis de zonas buffer Carga y Exploración de Bases de Datos Importar información Espacial Pensamiento Crítico	Bases de datos GIS On- line Lenguajes de Programa- ción Procedimientos de Con- sulta GIS usando Python Desarrollar procesa- miento de datos com- plejos Liderazgo
Universal Skills and Competencies for Geos- cientists Future of Un- dergraduate Geoscien- ce Education	S. Mosher	grandes cantidades de in Pensamiento Crítico / Sol Trabajar con incertidumbi ta, ambigua u observacio Herramientas de visualiza Data".	ución de Problemas re, información incomple-

Conclusiones

Posterior al proceso de documentación con la información seleccionada se construye un cuadro o mapa con la recopilación de los datos relevantes para la investigación. En respuesta a cada una de las preguntas se encuentra que:

Pregunta 1: En la revisión de literatura se encuentra que las competencias, las habilidades y las destrezas de un geousuario deben ser subdivididas dependiendo del plano en las que se las esté evaluando; de esta manera, un geousuario para tener éxito dentro del campo de los sistemas de información geográfica debe poseer competencias, habilidades y destrezas en las siguientes tres categorías:

- Fundamentales: Hace referencia a los conocimientos de las ciencias específicas que desarrolla el geousuario y la capacidad de comprender conceptos propios del área SIG. De acuerdo con la revisión de literatura, las principales son: cinemática, comprensión geoespacial, geografía, informática, pensamiento analítico, pensamiento crítico y matemáticas.
- Personales: Hace referencia a las capacidades propias de la personalidad del geousuario y sus relaciones con los demás, las cuales permiten

tener éxito en su comunicación con sus pares o clientes. En la revisión de literatura se concuerda con que se debe contar con capacidad para ser líder y seguidor, resolver conflictos, para trabajar con diferentes personalidades, trabajar en equipo, tomar decisiones, ser abierto a la retroalimentación, interacciones culturales y comunicación asertiva. Las anteriores capacidades se consideran fundamentales en el desarrollo interpersonal del geousuario.

Core GIS: Hace referencia a los conocimientos fundamentales propios de la profundización y el conocimiento especializado que debe desarrollar el geousuario para ser competente dentro del campo particular de los sistemas de información geográficos. En los documentos encontrados se destacan las habilidades de administración de datos, análisis espaciales, programación en diferentes lenguajes (siendo los más destacados Python y SQL), capacidades para los negocios y el diseño y conocimientos específicos como georreferenciación, proyecciones, interpretación datum. imágenes aéreas, fotogrametría, metadatos, topología, modelamiento, satélites y sensores remotos.

Los resultados se pueden observar en las Tablas 4 y 5.

Tabla 4. Resultados de habilidades del geousuario: Core GIS, fundamentales y personales

		Habilidades	
	Core GIS	Fundamentales	Personales
Administración GIS	Proyectos	Ciencia e Ingeniería	Autoconocimiento/ Auto administrarse
	Adquisición Almacenamiento	Cinemática Comprensión geoespacial	Automotivación/ Independencia
	Datos geoespaciales Manipulación Posicionamiento	Estadística espacial Evaluación y toma de decisiones	Comprensión sobre la relevancia de la sociedad
Datos	Visualización Calidad	Fundamentos: conceptua- les, espacio y lugar y	Comunicación efectiva
	Calidad	negocios	Construcción de relaciones
			Escucha y comunicación
			Estrategias de aprendizaje

ISSN: 2027-8101 - e-ISSN: 2619-5232. Enero-diciembre 2019 • página 91 de 154

	1	Habilidades	
	Core GIS	Fundamentales	Personales
Análisis	BigData Recuperación Interpolación Regresión espacial Estadística espacial Redes Métodos analíticos Presentación y evaluación del análisis Minería de datos	Geografía (física, humana y medio ambiental) Geología Informática Lectura y escritura Matemáticas Pensamiento (analítico y crítico)	Habilidades cuantitativas y de aplicación Fundamentos de negocios Gestión de proyectos en entornos de equipo Hablar en público Habilidades interpersonales Iniciativa Interacciones culturales Interpersonal Lectura y escritura
Sistemas	Costo Beneficio Scripts Red Arquitectura Consultas en BD Desarrollo de aplicaciones Geocomputación Algoritmos espaciales Web Mapping	Profesionalismo Solución de problemas Trabajando con tecnología Trabajo en equipo	Manejo del tiempo Perspectiva global Planeación/Organización Profesionalismo Cuestionamientos Abierto a la retroalimentación Ser tecnológicamente versátil Toma de decisiones Trabajar con incertidumbre

Tabla 5. Resultados de habilidades del geousuario: Core GIS y personales

	Habilidades	
Core	e GIS	Personales
Diseño	Composición de mapas Customizaciones Eficacia	Establecimiento de objetivos Resolución de conflictos Gestión de tiempos
GIS	Georreferenciación Proyecciones Datum GPS Agrimensura Geometría de la tierra Información geoespacial Interpretación de Imágenes aéreas Fotogrametría Metadatos Topología	Ser líder y seguidor Trabajar con personas en diferentes disciplinas

	Habilidades	
Core	e GIS	Personales
GIS	Modelamiento Satélites Sensores Remotos GIS&T and Societal Model Builder	Ser líder y seguidor Trabajar con personas en diferentes disciplinas
Pensamiento	Crítico Analítico Creativo Espacial Multidisciplinario Sistémico	Habilidad cognitiva

Fuente: Elaboración propia

Pregunta 2: Un equipo de desarrollo SIG, según la revisión de literatura, se encuentra compuesto por perfiles técnicos, analistas, ingenieros, administradores de proyectos, administradores de datos, desarrolladores y especialistas SIG. Cada uno con competencias, habilidades y destrezas para aplicar funciones en el ciclo de desarrollo de un proyecto SIG. En la revisión de literatura se evidencia que son difusos los alcances de cada perfil, en particular el cargo de analista,

y se evidencia sobrecarga de funciones tales como: análisis de datos, construcción de bases de datos, modelado y simulación de información, programación, análisis geoestadísticos, conocimientos de negocios, entre otros.

En la Tabla 6 se encuentra el listado de las habilidades de cada miembro de un equipo de desarrollo de proyectos SIG.

Tabla 6. Listado de habilidades del equipo de desarrollo de proyectos SIG

		Eo	Equipo de trabajo GIS	SI		
Técnico	Analista	Ingeniero	Administrador de Proyectos	Administrador de Datos	Desarrollador	Especialista GIS
Desarrollos cartográficos	Comunicaciones escritas	Trabajo colaborativo	Adquisición avanzada de habilidades analíticas	Diseño de software	Desarrollo de tecnologías de la información	Programa la organización de datos geográficos asociados con la geografía en formato digital
Visualización de información geoespacial	Atención al detalle y exactitud	Presentación oral y documentación	Presentar información espacial compleja	Habilidades SQL	Organizar y ejecutar actividades de diseño y construcción de Apps	Manipulación de Información espacial compleja para compararla con otros datos relacionados y realizar estadísticas para crear mapas visuales
Compilar y administrar información geoespacial	Trabajo independiente	Habilidades multitarea y priorización del trabajo	Desarrollar apli- caciones GIS para el usuario final	Configuración y mantenimiento de software	Brinda soporte a Sistemas de Información Geográficos	Presentación oral y documentación
Aplicar principios básicos de diseño de mapas	Análisis organizacional	Solución de problemas	Excel en análisis de sistemas	Bases de datos para almacenar datos espaciales		Trabajo colaborativo en diversos temas
Conocimientos básicos en fenómenos geográficos	Investigación	Надоор	Técnicas de negocios			Administración del tiempo

	ı	Ē	Equipo de trabajo GIS	SI		
Técnico	Analista	Ingeniero	Administrador de Proyectos	Administrador de Datos	Desarrollador	Especialista GIS
Análisis multidimensión	Trabajo colaborativo	Reducción de mapas	Interpolación			Python
Adquisición e integración de varios campos de información	Administrar el tiempo	Python	Programación computacional			Visualización
Imágenes informativas	SOL	SOL	Administración de bases de datos			E-Business
Información Vector - Ráster	MS Excel, R, SAS	neo4j	Diseño y desarrollo de aplicaciones GIS			Seguridad y privacidad de la Información
Crear, actualizar y manipular bases de datos	Stata, SPSS, Asteryx	MongoDB	Diseño o administrador de proyectos			Análisis de datos
Análisis vector y modelos de representación	MS Access	Programación PERL				
Aplicar	Python	java, Ruby				
operaciones	Minería de datos	MS Excel, R, SAS				
básicas de análisis	Analítica de datos	Estructura de datos				
	Visualizar información	Administración de datos avanzados				
	Nube computación	Nube computación				

		E	Equipo de trabajo GIS	SI	ı	
Técnico	Analista	Ingeniero	Administrador de Proyectos	Administrador de Datos	Desarrollador	Especialista GIS
	Análisis de datos espaciales para resolver problemas	Análisis de datos				
	Métodos de modelación	Diseño de algoritmos				
	Desarrollar evaluaciones multicriterio	Seguridad y privacidad de la información				
	Analizar los mecanismos construidos en la estructura de datos para facilitar la búsqueda y consulta de información geoespacial	Ingeniería de Software				
	Administración de Bases de Datos (DBMS)	Análisis de decisiones				
	Datos geográficos					
	Mapping					
	Programación de software					
	Representar la relación de distancia					

	ı	Ec	Equipo de trabajo GIS	SI	ı	
Técnico	Analista	Ingeniero	Administrador de Proyectos	Administrador de Datos	Desarrollador	Desarrollador Especialista GIS
	Análisis estadístico					
	Habilidades espaciales					
	Pensamiento creativo					
	Servicio y distribución computacionales					
	Tecnologías y estándar web					
	Diseño de algoritmos					
	Software Adobe Creative					

Fuente: Elaboración propia

Pregunta 3: Los modelos pedagógicos actuales carecen de un nivel de complejidad de acuerdo con los desafíos de enseñanza propuestos por los proyectos SIG, ya que tienen limitaciones en el cumplimiento de las expectativas del medio laboral. Asimismo, mientras que la cátedra carece de innovaciones o cambios en los últimos años, la perspectiva de los estudiantes es discordante

con los pensamientos de los profesores, si se considera el trabajo práctico relevante al momento de comprender y desarrollar las competencias y habilidades que requieren como profesionales SIG. En la Tabla 7 se presenta la compilación final de las metodologías de enseñanza con mayor acogida dentro de los SIG.

Tabla 7. Metodologías y procesos pedagógicos

Pedagogía	
Metodología Metodología	Procesos
Lecturas	
Ejercicios	
Laboratorios	
Tutoriales	
Trabajo de campo	
Exámenes	
Casos de estudio	
Conferencias	
Aprendizaje relacionado con el trabajo	
Participación en el proceso de enseñanza	Recordar
Aprendizaje experiencial	11000100
Experiencias de investigación	Entender
Pasantías	Aplicar
Integración y uso interactivo de la tecnología	Analizar
Visualización, simulación, modelado de datos reales	Sintetizar
Ambiente más informal	Evaluar
Colaboración activa entre la academia y los empleadores externos	Evalual
Comunidades de práctica	
Praxis pedagógica	
Diseño de experimentos teóricos	
Prácticas tecnológicas	
TPACK	
Flexibilidad profesional del docente	
Implementaciones	
Del concepto al contexto	
Participación constructiva	

Los sistemas de información geográfica ofrecen al mercado laboral técnicas analíticas de información, que involucran la posición geográfica del fenómeno en estudio. Estas técnicas son aplicables a cualquier rama del conocimiento y permiten realizar predicciones, revisiones estadísticas o visualización de la información, entre otras, lo que caracteriza a los SIG como una disciplina en constante desarrollo y cambio. En cuanto al mercado laboral, las organizaciones buscan empleados que tengan habilidades técnicas especializadas y competencias generales para colaborar y gestionar recursos. Para satisfacer estos requisitos, se debe asegurar que los profesionales SIG cuenten con formación universitaria efectiva mediante currículos ajustados a las demandas laborales y formular su aprendizaje en competencias, con base en la integración y activación de conocimientos, habilidades y destrezas (Velasco y Guerra, 2010). Sin embargo, aunque el BoK aporta una compilación de competencias y habilidades principales para un geousuario, no se logra cubrir totalmente las necesidades del mercado SIG. Por ello en este artículo se presenta una reflexión basada en una revisión de literatura para identificar los conocimientos necesarios requeridos para completar los vacíos existentes en el BoK; además, de integrar y aportar las competencias, habilidades y destrezas fundamentales dentro del núcleo principal de los SIG. Con esto se busca crear una base informativa para el desarrollo de currículos competentes en la formación de futuros profesionales en el área de sistemas de información geográfica.

De acuerdo con lo anterior, en lo referente a la administración de geodatos, se identifican como competencias fundamentales la adquisición, almacenamiento, manipulación y geovisualización del geodato. En cuanto al análisis de grandes cantidades de información, se incluye la interpolación, la regresión espacial, la estadística espacial y la minería de datos. Con respecto al área informática, los conocimientos primordiales son la programación, el desarrollo de aplicaciones geocomputacionales, algoritmos espaciales, web mapping y bases de datos espaciales, entre otros. Finalmente, entre los conocimientos específicos de los sistemas de información geográfica se

encuentra la georreferenciación, las proyecciones y el datums, la información geoespacial, la interpretación de imágenes aéreas, los metadatos, la topología, los sensores remotos y el pensamiento espacial.

Por otro lado, es relevante evaluar las herramientas propias de la personalidad que debe desarrollar un geousuario para tener éxito en su vida laboral y las relaciones interpersonales; dentro de estos comportamientos son fundamentales el autoconocimiento, la comunicación efectiva, la construcción de relaciones, tener fundamentos de negocios y gestión de proyectos en entornos de equipo, hablar en público y buenas interacciones culturales. Además, el geousuario debe contar con habilidades de planeación y organización, estar abierto a la retroalimentación, ser hábil en el trabajo con incertidumbre, en el trabajo en equipo, en resolución de conflictos y tener capacidad de adoptar el rol de líder o seguidor, de acuerdo con las condiciones que demande el proyecto SIG.

De igual manera, se destaca que las habilidades, competencias y destrezas son específicas del perfil en el que se desempeñe el geousuario dentro del equipo de trabajo SIG; cada rol cuenta con un alcance en funciones y conocimientos. Sin embargo, estos perfiles poseen funciones que se traslapan entre ellos e impiden identificar los límites entre uno y otro. Algunas de las funciones que se atribuyen a estos perfiles de trabajo SIG son: desarrollo de software, habilidades SQL, programación Python, Excel, java, análisis de datos, administración de bases de datos, visualización de información y diseño de mapas. Además, se identifica que la distribución de funciones no es homogénea entre los miembros del equipo de desarrollo, y el perfil de analista de geodatos el de mayor saturación en solicitud de conocimientos en: habilidades para comunicaciones orales y escritas, atención al detalle, trabajo independiente, análisis organizacional, investigación, SQL, MSExcel, R, SAS, Stata, SPSS, Alteryx, MS Access, python, minería de datos, analítica de datos, geovisualización de geodatos, nube computacional, desarrollo de evaluaciones multicriterio, administración de bases de datos (DBMS), análisis estadístico, habilidades espaciales, pensamiento creativo y diseño de algoritmos.

En contraposición al analista de geodatos, se encuentra el perfil de especialista en sistemas de información geográfica como el rol con las funciones menos claras, teniendo en cuenta que la formación para este rol exige altos conocimientos en SIG. Además, se observa que en la literatura se especifican pocas funciones: programar la organización de datos geográficos asociados con la geografía en formato digital, manipular información espacial compleja para compararla con otros datos relacionados y realizar estadísticas para crear mapas visuales, presentación oral y documentación, trabajo colaborativo en diversos temas, administración del tiempo, python, visualización de información, E-Business, seguridad y privacidad de la información y análisis de datos.

Las competencias, habilidades y destrezas descritas forman un profesional competente en sistemas de información geográfica desde el punto de vista profesional y personal. Sin embargo, desarrollar estos conocimientos en un individuo no es una tarea sencilla, es la calidad pedagógica la que garantiza los procesos de recordar, entender, aplicar, analizar, sintetizar y evaluar el aprendizaje para el éxito del proceso académico del geousuario. En la literatura se encuentra que la mejor metodología de enseñanza es la combinación de lecturas y ejercicios como: laboratorios, casos desarrollados en el aula, tutoriales informáticos, ejemplos en campo, prácticas, trabajos grupales, interdisciplinarios e integradores entre varias disciplinas. También se incluyen en la pedagogía los exámenes, casos de estudio, conferencias, aprendizaje relacionado con el trabajo, participación activa en el proceso de enseñanza, aprendizaje experiencial, investigación, proyectos y tesis. Se recomienda además integrar al proceso de enseñanza experiencias como: pasantías, integración y uso interactivo de la tecnología, visualización, simulación y modelado de datos reales. Por otra parte, lograr una colaboración activa entre la academia y los empleadores externos podría desarrollar otros enfoques en la educación como: nuevas praxis pedagógicas, diseño de experimentos teóricos, implementaciones o prácticas tecnológicas, participación constructiva.

Trabajo futuro

La revisión de la literatura anterior proporciona las bases para trabajos posteriores en el campo psicológico, en el cual se tiene como objetivo desarrollar una herramienta informática que permita identificar cuándo un profesional SIG posee en mayor o menor grado las competencias, habilidades y destrezas para desempeñarse en un rol específico dentro de un equipo de trabajo. La función de la herramienta es resaltar los límites entre los diferentes roles y brindar una mayor precisión al área de gestión humana en procesos de selección para perfiles en el área de sistemas de información geográfica. Por otra parte, la revisión presentada es un insumo para estudiar la reestructuración del currículo que presenta la Universidad de San Buenaventura en su programa de Especialización en Sistemas de Información Geográficos y en la Maestría en Geoinformática.

Referencias

Arias, J. y Durango, C. (2017). Propuesta de un método para desarrollar Sistemas de Información Geográfica a partir de la metodología de desarrollo ágil - SCRUM -. Cuaderno Activa, 10(1), 29-41.

Baker, T., Battersby, S., Bednarz, S., Bodzin, A., Kolvoord, B., Moore, S. y Uttal, D. (2015). A Research Agenda for Geospatial Technologies and Learning. Journal of Geography, 114(3), 118-130.

Bosque, J., Rodríguez, V., Aguilera, F., Gómez, M., Salado, M. y Barreira, P. (2015). Una propuesta de competencias y capacidades para los estudios sobre tecnologías de la información geográfica (TIG). Ciencias Espaciales, 8(1), 68-88.

Brereton, P., Kitchenham, B., Budgen, D., Turner, M. y Khalil, M. (2007). Lessons from applying the systematic literature review process within the software engineering domain. Journal of Systems and Software, 80(4), 571-583.

Davis, M. (2014). What to consider when preparing a model core curriculum for GIS ethics: objectives, methods, and a sketch of content. Journal of Geography in Higher Education, 38(4), 471-480.

- De Cos, O. y Reques, P. (2010). Espacio europeo de educación superior y geografía: la importancia de la formación en competencias y la empleabilidad. Boletín de la Asociación de Geógrafos Españoles, 52, 295-312.
- De Róiste, M. (2014). Filling the gap: The geospatial skills shortage in New Zealand. New Zealand Geographer, 70(3), 179-89.
- Durango, C. (2014). Asociación de datos espaciotemporales en bases de datos Oracle, Ingenierías USBMed, 5(2), 100-08.
- Durango, C. y Zapata, C. (2015). Una representación basada en Semat y RUP para el Método de Desarrollo SIG del Instituto Geográfico Agustín Codazzi. Ingenierías USBMed, 6(1), 24-37.
- Elwood, S. y Wilson, M. (2017). Critical GIS pedagogies beyond 'Week 10: Ethics.' International Journal of Geographical Information Science, 31(10), 2098-2116.
- Ferrandino, J. (2014). Incorporating GIS as an Interdisciplinary Pedagogical Tool throughout an MPA Program. Journal of Public Affairs Education, 20(4), 529-544.
- Guan, W. (2009). Bringing Operational GIS Into University Classrooms. Center for Geographic Analysis and the Extension School, Harvard University, 63(2), 375-382.
- Guan, W., Schulze, U., Kanwischer, D., Reudenbach, C., Sarkar, A., Pick, J., ... Mosher, S. (2015). A Model and Case Analysis of Geographical Information Systems Curricula in Management Schools. Journal of Geography, 39(3), 34-43.
- Hofer, B., Traun, C., Gudrun, W. y Strobl, J. (2014). Workforce Demand Assessment to Shape Future GI Education First Results of a Survey. International Conference on Geographic Information Science. Castellón, España.
- Hong, J. (2016). Identifying Skill Requirements for GIS Positions: A Content Analysis of Job Advertisements. Journal of Geography, 115(4), 147-158.
- Kedron, P., Frazier, A., Greene, C. & Mitchell, D. (2016). Curriculum Design for Upper and Advanced-level GIS Classes: Are New Skills Being Taught and Integrated? GI_FORUM Journal, (1), 324-335

- Kitchenham, B. (2004). Procedures for performing systematic reviews. Eversleigh, Australia: Keele University.
- Kitchenham, B., Pearl, O., Budgen, D., Turner, M., Bailey, J. y Linkman, S. (2009). Systematic literature reviews in software engineering. A systematic literature review. Information and Software Technology, 51(1), 7-15.
- Kopteva, I., Arkowski, D. y Craft, E. (2015). Tiered Internship Model for Undergraduate Students in Geospatial Science and Technology. Community College Journal of Research and Practice, 39(1), 34-43.
- Lyon, L. y Mattern, E. (2017). Education for Real-World Data Science Roles (Part 2): A Translational Approach to Curriculum Development. International Journal of Digital Curation, 11(2), 13-26.
- Martí, C., Feliu, J. y Varga, D. (2014). Geographic Information Technology and Innovative Teaching: Keys to Geography Degree Curriculum Reform. Journal of Geography, 113(3), 118-128.
- Mirzoev, T., Pryzbysz, B. y Centeno, J. (2015). GIS as a Job Growth Area for IT Professionals. World of Computer Science and Information Technology Journal (WCSIT), 5(6), 98-111.
- Nazari, M. (2016). The actuality of determining information need in geographic information systems and science (GIS): A context-to-concept approach. Library and Information Science Research, 38(2), 133-147.
- Plessis, H. y Niekerk, A. (2012). A New GIS Framework and Competency Set for Curricula Development at South African Universities. South African Journal of Geomatics, 3(1), 1-12.
- Sarkar, A. y Pick, J. (2014). A Model and Case Analysis of Geographical Information Systems Curricula in Management Schools. Information Systems. Americas Conference. 20th (AMCIS 2014). Savannah, Georgia, USA.
- Schulze, U., Kanwischer, D. y Reudenbach, C. (2011). Competence Dimensions in a Bologna-oriented GIS Education. In T. Jekel, A. Koller, K. Donert & R. Vogler (Eds.), Learning with GI (pp. 108-117). Berlin: Wichmann Verlag.

- Schulze, U., Kanwischer, D. y Reudenbach, C. (2013). Essential competencies for GIS learning in higher education: A synthesis of international curriculum documents in the GIS&T domain. Journal of Geography in Higher Education, 37(2), 257-275.
- Seremet, M. y Chalkley, B. (2015). Student perspectives on the teaching of geographical information systems (GIS) in geography degrees. Journal of Geography in Higher Education, 39(1), 18-36.
- Tate, N. y Jarvis, C. (2017). Changing the face of GIS education with communities of practice. Journal of Geography in Higher Education, 41(3), 327-340.
- Tobón, S. (2008). La formación basada en competencias en la educación superior: El enfoque complejo. Guadalajara, México: Instituto Cife.ws.
- Torrijo, H. (2015). Una Mirada Internacional de la Construcción Curricular. Por un currículo vivo, democrático y deliberativo. Revista Electrónica de Investigación Educativa REDIE, 17(1), 1-16.

- Veenendaal, B. (2014). Addressing the challenges of a quarter century of giscience education: A flexible higher education curriculum framework. International Archives of the Photogrammetry. Remote Sensing and Spatial Information Sciences, 40(6), 107-112.
- Wallentin, G., Hofer, B. y Traun, C. (2015). Assessment of Workforce Demands to Shape GIS&T Education. Transactions in GIS, 19(3), 439-454.
- Waters, N. (2013). The Geographic Information Science Body of knowledge 2.0: Toward a New Federation of GIS Knowledge. Communications in Computer and Information Science, (372), 129-142.
- Wikle, T. y Fagin, T. (2014). GIS course planning: A comparison of syllabi at US college and universities. Transactions in GIS, 18(4), 574-585.
- Wikle, T. y Fagin, T. (2015). Hard and soft skills in preparing GIS professionals: Comparing perceptions of employers and educators. Transactions in GIS, 19(5), 641-652.

